Gudrun Rappold
Heidelberg University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Gudrun Rappold.
Nature Genetics | 1997
Ercole Rao; Birgit Weiss; Maki Fukami; Andreas Rump; Beate Niesler; Annelyse Mertz; Koji Muroya; Gerhard Binder; Stefan Kirsch; Martina Winkelmann; Gabriele Nordsiek; Udo Heinrich; Martijn H. Breuning; Michael B. Ranke; André Rosenthal; Tsutomu Ogata; Gudrun Rappold
Growth retardation resulting in short stature is a major concern for parents and due to its great variety of causes, a complex diagnostic challenge for clinicians. A major locus involved in linear growth has been implicated within the pseudoautosomal region (PAR1) of the human sex chromosomes. We have determined an interval of 170 kb of DNA within PAR1 which was deleted in 36 individuals with short stature and different rearrangements on Xp22 or Yp11.3. This deletion was not detected in any of the relatives with normal stature or in a further 30 individuals with rearrangements on Xp22 or Yp11.3 with normal height. We have isolated a homeobox-containing gene (SHOX} from this region, which has at least two alternatively spliced forms, encoding proteins with different patterns of expression. We also identified one functionally significant SHOX mutation by screening 91 individuals with idiopathic short stature. Our data suggest an involvement of SHOX in idiopathic growth retardation and in the short stature phenotype of Turner syndrome patients.
The Lancet | 2012
Anita Rauch; Dagmar Wieczorek; Elisabeth Graf; Thomas Wieland; Sabine Endele; Thomas Schwarzmayr; Beate Albrecht; Deborah Bartholdi; Jasmin Beygo; Nataliya Di Donato; Andreas Dufke; Kirsten Cremer; Maja Hempel; Denise Horn; Juliane Hoyer; Pascal Joset; Albrecht Röpke; Ute Moog; Angelika Riess; Christian Thiel; Andreas Tzschach; Antje Wiesener; Eva Wohlleber; Christiane Zweier; Arif B. Ekici; Alexander M. Zink; Andreas Rump; Christa Meisinger; Harald Grallert; Heinrich Sticht
BACKGROUND The genetic cause of intellectual disability in most patients is unclear because of the absence of morphological clues, information about the position of such genes, and suitable screening methods. Our aim was to identify de-novo variants in individuals with sporadic non-syndromic intellectual disability. METHODS In this study, we enrolled children with intellectual disability and their parents from ten centres in Germany and Switzerland. We compared exome sequences between patients and their parents to identify de-novo variants. 20 children and their parents from the KORA Augsburg Diabetes Family Study were investigated as controls. FINDINGS We enrolled 51 participants from the German Mental Retardation Network. 45 (88%) participants in the case group and 14 (70%) in the control group had de-novo variants. We identified 87 de-novo variants in the case group, with an exomic mutation rate of 1·71 per individual per generation. In the control group we identified 24 de-novo variants, which is 1·2 events per individual per generation. More participants in the case group had loss-of-function variants than in the control group (20/51 vs 2/20; p=0·022), suggesting their contribution to disease development. 16 patients carried de-novo variants in known intellectual disability genes with three recurrently mutated genes (STXBP1, SYNGAP1, and SCN2A). We deemed at least six loss-of-function mutations in six novel genes to be disease causing. We also identified several missense alterations with potential pathogenicity. INTERPRETATION After exclusion of copy-number variants, de-novo point mutations and small indels are associated with severe, sporadic non-syndromic intellectual disability, accounting for 45-55% of patients with high locus heterogeneity. Autosomal recessive inheritance seems to contribute little in the outbred population investigated. The large number of de-novo variants in known intellectual disability genes is only partially attributable to known non-specific phenotypes. Several patients did not meet the expected syndromic manifestation, suggesting a strong bias in present clinical syndrome descriptions. FUNDING German Ministry of Education and Research, European Commission 7th Framework Program, and Swiss National Science Foundation.
Nature Genetics | 2010
Simone Berkel; Christian R. Marshall; Birgit Weiss; Jennifer L. Howe; Ralph Roeth; Ute Moog; Volker Endris; Wendy Roberts; Peter Szatmari; Dalila Pinto; Michael Bonin; Angelika Riess; Hartmut Engels; Rolf Sprengel; Stephen W. Scherer; Gudrun Rappold
Using microarrays, we identified de novo copy number variations in the SHANK2 synaptic scaffolding gene in two unrelated individuals with autism-spectrum disorder (ASD) and mental retardation. DNA sequencing of SHANK2 in 396 individuals with ASD, 184 individuals with mental retardation and 659 unaffected individuals (controls) revealed additional variants that were specific to ASD and mental retardation cases, including a de novo nonsense mutation and seven rare inherited changes. Our findings further link common genes between ASD and intellectual disability.
Nature Neuroscience | 1998
Dirk Gründemann; Birgit Schechinger; Gudrun Rappold; Edgar Schömig
Catecholaminergic signaling regulates various physiological functions, such as blood pressure and is implicated in drug dependence, affective disorders and male aggressive behavior. The actions of released catecholamines are terminated by sodium-driven, high-affinity transporters in the plasma membrane of the releasing neurons and by a corticosterone-sensitive, low-affinity, high-capacity extraneuronal transport system, originally named uptake2, found in sympathetically innervated tissues and in central nervous system glia. Here we report the molecular identification and pharmacological characterization of the extraneuronal catecholamine transporter, which is unrelated to the family of sodium-driven neuronal monoamine transporters.
Nature Genetics | 2010
Sabine Endele; Georg Rosenberger; Kirsten Geider; Bernt Popp; Ceyhun Tamer; Irina Stefanova; Mathieu Milh; Fanny Kortüm; Angela Fritsch; Friederike K. Pientka; Yorck Hellenbroich; Vera M. Kalscheuer; Jürgen Kohlhase; Ute Moog; Gudrun Rappold; Anita Rauch; Hans-Hilger Ropers; Sarah von Spiczak; Holger Tönnies; Nathalie Villeneuve; Laurent Villard; Bernhard Zabel; Martin Zenker; Bodo Laube; André Reis; Dagmar Wieczorek; Lionel Van Maldergem; Kerstin Kutsche
N-methyl-D-aspartate (NMDA) receptors mediate excitatory neurotransmission in the mammalian brain. Two glycine-binding NR1 subunits and two glutamate-binding NR2 subunits each form highly Ca2+-permeable cation channels which are blocked by extracellular Mg2+ in a voltage-dependent manner. Either GRIN2B or GRIN2A, encoding the NMDA receptor subunits NR2B and NR2A, was found to be disrupted by chromosome translocation breakpoints in individuals with mental retardation and/or epilepsy. Sequencing of GRIN2B in 468 individuals with mental retardation revealed four de novo mutations: a frameshift, a missense and two splice-site mutations. In another cohort of 127 individuals with idiopathic epilepsy and/or mental retardation, we discovered a GRIN2A nonsense mutation in a three-generation family. In a girl with early-onset epileptic encephalopathy, we identified the de novo GRIN2A mutation c.1845C>A predicting the amino acid substitution p.N615K. Analysis of NR1-NR2AN615K (NR2A subunit with the p.N615K alteration) receptor currents revealed a loss of the Mg2+ block and a decrease in Ca2+ permeability. Our findings suggest that disturbances in the neuronal electrophysiological balance during development result in variable neurological phenotypes depending on which NR2 subunit of NMDA receptors is affected.
Cell | 1995
Brunella Franco; Germana Meroni; Giancarlo Parenti; Jacqueline Levilliers; Loris Bernard; Marinella Gebbia; Liza L Cox; Pierre Maroteaux; Leslie J. Sheffield; Gudrun Rappold; Generoso Andria; Christine Petit; Andrea Ballabio
X-linked recessive chondrodysplasia punctata (CDPX) is a congenital defect of bone and cartilage development characterized by aberrant bone mineralization, severe underdevelopment of nasal cartilage, and distal phalangeal hypoplasia. A virtually identical phenotype is observed in the warfarin embryopathy, which is due to the teratogenic effects of coumarin derivatives during pregnancy. We have cloned the genomic region within Xp22.3 where the CDPX gene has been assigned and isolated three adjacent genes showing highly significant homology to the sulfatase gene family. Point mutations in one of these genes were identified in five patients with CDPX. Expression of this gene in COS cells resulted in a heat-labile arylsulfatase activity that is inhibited by warfarin. A deficiency of a heat-labile arylsulfatase activity was demonstrated in patients with deletions spanning the CDPX region. These data indicate that CDPX is caused by an inherited deficiency of a novel sulfatase and suggest that warfarin embryopathy might involve drug-induced inhibition of the same enzyme.
Human Genetics | 1993
Gudrun Rappold
In human females, both X chromosomes are equivalent in size and genetic content, and pairing and recombination can theoretically occur anywhere along their entire length. In human males, however, only small regions of sequence identity exist between the sex chromosomes. Recombination and genetic exchange is restricted to these regions of identity, which cover 2.6 and 0.4 Mbp, respectively, and are located at the tips of the short and the long arm of the X and Y chromosome. The unique biology of these regions has attracted considerable interest, and complete long-range restriction maps as well as comprehensive physical maps of overlapping YAC clones are already available. A dense genetic linkage map has disclosed a high rate of recombination at the short arm telomere. A consequence of the obligatory recombination within the pseudoautosomal region is that genes show only partial sex linkage. Pseudoautosomal genes are also predicted to escape X-inactivation, thus guaranteeing an equal dosage of expressed sequences between the X and Y chromosomes. Gene pairs that are active on the X and Y chromosomes are suggested as candidates for the phenotypes seen in numerical X chromosome disorders, such as Klinefelters (47,XXY) and Turners syndrome (45,X). Several new genes have been assigned to the Xp/Yp pseudoautosomal region. Potential associations with clinical disorders such as short stature, one of the Turner features, and psychiatric diseases are discussed. Genes in the Xq/Yq pseudoautosomal region have not been identified to date.
American Journal of Human Genetics | 2012
Daisuke Sato; Anath C. Lionel; Claire S. Leblond; Aparna Prasad; Dalila Pinto; Susan Walker; Irene O'Connor; Carolyn Russell; Irene Drmic; Fadi F. Hamdan; Jacques L. Michaud; Volker Endris; Ralph Roeth; Richard Delorme; Guillaume Huguet; Marion Leboyer; Maria Råstam; Christopher Gillberg; Mark Lathrop; Dimitri J. Stavropoulos; Evdokia Anagnostou; Rosanna Weksberg; Eric Fombonne; Lonnie Zwaigenbaum; Bridget A. Fernandez; Wendy Roberts; Gudrun Rappold; Christian R. Marshall; Thomas Bourgeron; Peter Szatmari
Recent studies have highlighted the involvement of rare (<1% frequency) copy-number variations and point mutations in the genetic etiology of autism spectrum disorder (ASD); these variants particularly affect genes involved in the neuronal synaptic complex. The SHANK gene family consists of three members (SHANK1, SHANK2, and SHANK3), which encode scaffolding proteins required for the proper formation and function of neuronal synapses. Although SHANK2 and SHANK3 mutations have been implicated in ASD and intellectual disability, the involvement of SHANK1 is unknown. Here, we assess microarray data from 1,158 Canadian and 456 European individuals with ASD to discover microdeletions at the SHANK1 locus on chromosome 19. We identify a hemizygous SHANK1 deletion that segregates in a four-generation family in which male carriers--but not female carriers--have ASD with higher functioning. A de novo SHANK1 deletion was also detected in an unrelated male individual with ASD with higher functioning, and no equivalent SHANK1 mutations were found in >15,000 controls (p = 0.009). The discovery of apparent reduced penetrance of ASD in females bearing inherited autosomal SHANK1 deletions provides a possible contributory model for the male gender bias in autism. The data are also informative for clinical-genetics interpretations of both inherited and sporadic forms of ASD involving SHANK1.
Proceedings of the National Academy of Sciences of the United States of America | 2002
Volker Endris; Birgit Wogatzky; Uwe Leimer; Dusan Bartsch; Malgorzata Zatyka; Farida Latif; Eamonn R. Maher; Gholamali Tariverdian; Stefan Kirsch; Dieter Karch; Gudrun Rappold
In the last few years, several genes involved in X-specific mental retardation (MR) have been identified by using genetic analysis. Although it is likely that additional genes responsible for idiopathic MR are also localized on the autosomes, cloning and characterization of such genes have been elusive so far. Here, we report the isolation of a previously uncharacterized gene, MEGAP, which is disrupted and functionally inactivated by a translocation breakpoint in a patient who shares some characteristic clinical features, such as hypotonia and severe MR, with the 3p− syndrome. By fluorescence in situ hybridization and loss of heterozygosity analysis, we demonstrated that this gene resides on chromosome 3p25 and is deleted in 3p− patients that present MR. MEGAP/srGAP3 mRNA is predominantly and highly expressed in fetal and adult brain, specifically in the neurons of the hippocampus and cortex, structures known to play a pivotal role in higher cognitive function, learning, and memory. We describe several MEGAP/srGAP3 transcript isoforms and show that MEGAP/srGAP3a and -b represent functional GTPase-activating proteins (GAP) by an in vitro GAP assay. MEGAP/srGAP3 has recently been shown to be part of the Slit-Robo pathway regulating neuronal migration and axonal branching, highlighting the important role of MEGAP/srGAP3 in mental development. We propose that haploinsufficiency of MEGAP/srGAP3 leads to the abnormal development of neuronal structures that are important for normal cognitive function.
PLOS Genetics | 2014
Claire S. Leblond; Caroline Nava; Anne Polge; Julie Gauthier; Guillaume Huguet; Serge Lumbroso; Fabienne Giuliano; Coline Stordeur; Christel Depienne; Kevin Mouzat; Dalila Pinto; Jennifer L. Howe; Nathalie Lemière; Christelle M. Durand; Jessica Guibert; Elodie Ey; Roberto Toro; Hugo Peyre; Alexandre Mathieu; Frédérique Amsellem; Maria Råstam; I. Carina Gillberg; Gudrun Rappold; Richard Holt; Anthony P. Monaco; Elena Maestrini; Pilar Galan; Delphine Héron; Aurélia Jacquette; Alexandra Afenjar
SHANK genes code for scaffold proteins located at the post-synaptic density of glutamatergic synapses. In neurons, SHANK2 and SHANK3 have a positive effect on the induction and maturation of dendritic spines, whereas SHANK1 induces the enlargement of spine heads. Mutations in SHANK genes have been associated with autism spectrum disorders (ASD), but their prevalence and clinical relevance remain to be determined. Here, we performed a new screen and a meta-analysis of SHANK copy-number and coding-sequence variants in ASD. Copy-number variants were analyzed in 5,657 patients and 19,163 controls, coding-sequence variants were ascertained in 760 to 2,147 patients and 492 to 1,090 controls (depending on the gene), and, individuals carrying de novo or truncating SHANK mutations underwent an extensive clinical investigation. Copy-number variants and truncating mutations in SHANK genes were present in ∼1% of patients with ASD: mutations in SHANK1 were rare (0.04%) and present in males with normal IQ and autism; mutations in SHANK2 were present in 0.17% of patients with ASD and mild intellectual disability; mutations in SHANK3 were present in 0.69% of patients with ASD and up to 2.12% of the cases with moderate to profound intellectual disability. In summary, mutations of the SHANK genes were detected in the whole spectrum of autism with a gradient of severity in cognitive impairment. Given the rare frequency of SHANK1 and SHANK2 deleterious mutations, the clinical relevance of these genes remains to be ascertained. In contrast, the frequency and the penetrance of SHANK3 mutations in individuals with ASD and intellectual disability—more than 1 in 50—warrant its consideration for mutation screening in clinical practice.