Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gudrun Schmidt is active.

Publication


Featured researches published by Gudrun Schmidt.


Current Opinion in Colloid and Interface Science | 2003

Properties of polymer-nanoparticle composites

Gudrun Schmidt; Matthew M. Malwitz

Abstract An overview of properties of polymer–nanoparticle composites in bulk and in solution is presented along with a review of work performed during the last 3 years. The review is particularly focused on organic–inorganic materials such as polymer–nanospheres, tubes, rods, fibers and nanoplatelets. Fundamental studies on flow-induced structures in polymer–particle composites are emphasized. This relatively new area demands sophisticated experiments to augment pragmatic knowledge necessary to support theoretical descriptions of composite structures and properties. The complexity of this area guarantees that this will remain an active field for some time to come.


Biomacromolecules | 2011

Highly Extensible, Tough, and Elastomeric Nanocomposite Hydrogels from Poly(ethylene glycol) and Hydroxyapatite Nanoparticles

Akhilesh K. Gaharwar; Sandhya A. Dammu; Jamie M. Canter; Chia-Jung Wu; Gudrun Schmidt

Unique combinations of hard and soft components found in biological tissues have inspired researchers to design and develop synthetic nanocomposite gels and hydrogels with elastomeric properties. These elastic materials can potentially be used as synthetic mimics for diverse tissue engineering applications. Here we present a set of elastomeric nanocomposite hydrogels made from poly(ethylene glycol) (PEG) and hydroxyapatite nanoparticles (nHAp). The aqueous nanocomposite PEG-nHAp precursor solutions can be injected and then covalently cross-linked via photopolymerization. The resulting PEG-nHAp hydrogels have interconnected pore sizes ranging from 100 to 300 nm. They have higher extensibilities, fracture stresses, compressive strengths, and toughness when compared with conventional PEO hydrogels. The enhanced mechanical properties are a result of polymer nanoparticle interactions that interfere with the permanent cross-linking of PEG during photopolymerization. The effect of nHAp concentration and temperature on hydrogel swelling kinetics was evaluated under physiological conditions. An increase in nHAp concentration decreased the hydrogel saturated swelling degree. The combination of PEG and nHAp nanoparticles significantly improved the physical and chemical hydrogel properties as well as some biological characteristics such as osteoblast cell adhesion. Further development of these elastomeric materials can potentially lead to use as a matrix for drug delivery and tissue repair especially for orthopedic applications.


Colloid and Polymer Science | 2013

A review on tough and sticky hydrogels

Charles W. Peak; Jonathan J. Wilker; Gudrun Schmidt

In this review, we survey recent literature (2009–2013) on hydrogels that are mechanically tough and adhesive. The impact of published work and trends in the field are examined. We focus on design concepts, new materials, structures related to mechanical performance and adhesion properties. Besides hydrogels made of individual polymers, concepts developed to toughen hydrogels include interpenetrating and double networks, slide ring polymer gels, topological hydrogels, ionically cross-linked copolymer gels, nanocomposite polymer hydrogels, self-assembled microcomposite hydrogels, and combinations thereof. Hydrogels that are adhesive in addition to tough are also discussed. Adhesive properties, especially wet adhesion of hydrogels, are rare but needed for a variety of general technologies. Some of the most promising industrial applications are found in the areas of sensor and actuator technology, microfluidics, drug delivery and biomedical devices. The most recent accomplishments and creative approaches to making tough and sticky hydrogels are highlighted. This review concludes with perspectives for future directions, challenges and opportunities in a continuously changing world.


Acta Biomaterialia | 2011

Transparent, elastomeric and tough hydrogels from poly(ethylene glycol) and silicate nanoparticles

Akhilesh K. Gaharwar; Christian Rivera; Chia-Jung Wu; Gudrun Schmidt

The structures and mechanical properties of both physically and covalently cross-linked nanocomposite hydrogels made from poly(ethylene glycol) (PEG) and silicate nanoparticles (Laponite RD) are investigated. Injectable nanocomposite precursor solutions can be covalently cross-linked via photopolymerization. The resulting hydrogels are transparent and have interconnected pores, high elongation and toughness. These properties depend on the hydrogel composition, polymer-nanoparticle interactions and degree of cross-linking (both physical and covalent). Covalent cross-linking of polymer chains leads to the formation of an elastic network, whereas physical cross-linking between nanoparticles and polymer chains induces viscoelastic properties. At high deformations covalent bonds may be broken but physical bonds rebuild and to some extent self-heal the overall network structure. Addition of silicate also enhances the bioactivity and adhesiveness of the hydrogel as these materials stick to soft tissue as well as to hard surfaces. In addition, MC3T3-E1 mouse preosteoblast cells readily adhere and spread on nanocomposite hydrogel surfaces. Collectively, the combinations of properties such as elasticity, stiffness, interconnected network, adhesiveness to surfaces and bio-adhesion to cells provide inspiration and opportunities to engineer mechanically strong and elastic tissue matrixes for orthopedic, craniofacial and dental applications.


Acta Biomaterialia | 2011

Assessment of using laponite cross-linked poly(ethylene oxide) for controlled cell adhesion and mineralization.

Akhilesh K. Gaharwar; Patrick Schexnailder; Benjamin Patrick Kline; Gudrun Schmidt

The in vitro cytocompatibility of silicate (Laponite clay) cross-linked poly(ethylene oxide) (PEO) nanocomposite films using MC3T3-E1 mouse preosteoblast cells was investigated while cell adhesion, spreading, proliferation and mineralization were assessed as a function of film composition. By combining the advantageous characteristics of PEO polymer (hydrophilic, prevents protein and cell adhesion) with those of a synthetic and layered silicate (charged, degradable and potentially bioactive) some of the physical and chemical properties of the resulting polymer nanocomposites could be controlled. Hydration, dissolution and mechanical properties were examined and related to cell adhesion. Overall, this feasibility study demonstrates the ability of using model Laponite cross-linked PEO nanocomposites to create bioactive scaffolds.


Materials | 2010

Development of Biomedical Polymer-Silicate Nanocomposites: A Materials Science Perspective

Chia-Jung Wu; Akhilesh K. Gaharwar; Patrick Schexnailder; Gudrun Schmidt

Biomedical polymer-silicate nanocomposites have potential to become critically important to the development of biomedical applications, ranging from diagnostic and therapeutic devices, tissue regeneration and drug delivery matrixes to various bio-technologies that are inspired by biology but have only indirect biomedical relation. The fundamental understanding of polymer-nanoparticle interactions is absolutely necessary to control structure-property relationships of materials that need to work within the chemical, physical and biological constraints required by an application. This review summarizes the most recent published strategies to design and develop polymer-silicate nanocomposites (including clay based silicate nanoparticles and bioactive glass nanoparticles) for a variety of biomedical applications. Emerging trends in bio-technological and biomedical nanocomposites are highlighted and potential new fields of applications are examined.


Materials Science and Engineering: C | 2013

Photocrosslinked nanocomposite hydrogels from PEG and silica nanospheres: structural, mechanical and cell adhesion characteristics.

Akhilesh K. Gaharwar; Christian Rivera; Chia-Jung Wu; Burke K. Chan; Gudrun Schmidt

Photopolymerized hydrogels are extensively investigated for various tissue engineering applications, primarily due to their ability to form hydrogels in a minimally invasive manner. Although photocrosslinkable hydrogels provide necessary biological and chemical characteristics to mimic cellular microenvironments, they often lack sufficient mechanical properties. Recently, nanocomposite approaches have demonstrated potential to overcome these deficits by reinforcing the hydrogel network with. In this study, we investigate some physical, chemical, and biological properties of photocrosslinked poly(ethylene glycol) (PEG)-silica hydrogels. The addition of silica nanospheres significantly suppresses the hydration degree of the PEG hydrogels, indicating surface interactions between the silica nanospheres and the polymer chains. No significant change in hydrogel microstructure or average pore size due to the addition of silica nanospheres was observed. However, addition of silica nanospheres significantly increases both the mechanical strength and the toughness of the hydrogel networks. The biological properties of these nanocomposite hydrogels were evaluated by seeding fibroblast cells on the hydrogel surface. While the PEG hydrogels showed minimum cell adhesion, spreading and proliferation, the addition of silica nanospheres enhanced initial cell adhesion, promoted cell spreading and increased the metabolic activity of the cells. Overall, results indicate that the addition of silica nanospheres improves the mechanical stiffness and cell adhesion properties of PEG hydrogels and can be used for biomedical applications that required controlled cell adhesion.


Macromolecular Bioscience | 2012

Physically crosslinked nanocomposites from silicate-crosslinked PEO: mechanical properties and osteogenic differentiation of human mesenchymal stem cells.

Akhilesh K. Gaharwar; Vipuil Kishore; Christian Rivera; Whitney Bullock; Chia Jung Wu; Ozan Akkus; Gudrun Schmidt

The mechanical and biological properties of silicate-crosslinked PEO nanocomposites are studied. A strong correlation is observed between silicate concentration and mechanical properties. In vitro cell culture studies reveal that an increase in silicate concentration enhances the attachment and proliferation of human mesenchymal stem cells significantly. An upregulation in the expression of osteocalcin on nanocomposites compared to the tissue culture polystyrene control is observed. Together, these results suggest that silicate-based nanocomposites are bioactive and have the potential to be used in a range of biotechnological and biomedical applications such as injectable matrices, biomedical coatings, drug delivery, and regenerative medicine.


Macromolecular Bioscience | 2010

Tuning cell adhesion by incorporation of charged silicate nanoparticles as cross-linkers to polyethylene oxide.

Patrick Schexnailder; Akhilesh K. Gaharwar; Rush L. Bartlett; Brandon Seal; Gudrun Schmidt

Controlling cell adhesion on a biomaterial surface is associated with the long-term efficacy of an implanted material. Here we connect the material properties of nanocomposite films made from PEO physically cross-linked with layered silicate nanoparticles (Laponite) to cellular adhesion. Fibroblast cells do not adhere to pure PEO, but they attach to silicate containing nanocomposites. Under aqueous conditions, the films swell and the degree of swelling depends on the nanocomposite composition and film structure. Higher PEO compositions do not support cell proliferation due to little exposed silicate surfaces. Higher silicate compositions do allow significant cell proliferation and spreading. These bio-nanocomposites have potential for the development of biomedical materials that can control cellular adhesion.


ACS Applied Materials & Interfaces | 2010

Addition of Chitosan to Silicate Cross-Linked PEO for Tuning Osteoblast Cell Adhesion and Mineralization

Akhilesh K. Gaharwar; Patrick Schexnailder; Qu Jin; Chia-Jung Wu; Gudrun Schmidt

The addition of chitosan to silicate (Laponite) cross-linked poly(ethylene oxide) (PEO) is used for tuning nanocomposite material properties and tailoring cellular adhesion and bioactivity. By combining the characteristics of chitosan (which promotes cell adhesion and growth, antimicrobial) with properties of PEO (prevents protein and cell adhesion) and those of Laponite (bioactive), the resulting material properties can be used to tune cellular adhesion and control biomineralization. Here, we present the hydration, dissolution, degradation, and mechanical properties of multiphase bio-nanocomposites and relate these to the cell growth of MC3T3-E1 mouse preosteoblast cells. We find that the structural integrity of these bio-nanocomposites is improved by the addition of chitosan, but the release of entrapped proteins is suppressed. Overall, this study shows how chitosan can be used to tune properties in Laponite cross-linked PEO for creating bioactive scaffolds to be considered for bone repair.

Collaboration


Dive into the Gudrun Schmidt's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lionel Porcar

National Institute of Standards and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Elena Loizou

National Institute of Standards and Technology

View shared research outputs
Top Co-Authors

Avatar

Paul Butler

National Institute of Standards and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge