Guenter Kraus
Tibotec
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Guenter Kraus.
Antimicrobial Agents and Chemotherapy | 2010
Hilde Azijn; Ilse Tirry; Johan Vingerhoets; Marie-Pierre de Béthune; Guenter Kraus; Katia Boven; Dirk Jochmans; Elke Van Craenenbroeck; Gaston Picchio; Laurence Rimsky
ABSTRACT Nonnucleoside reverse transcriptase inhibitors (NNRTIs) have proven efficacy against human immunodeficiency virus type 1 (HIV-1). However, in the setting of incomplete viral suppression, efavirenz and nevirapine select for resistant viruses. The diarylpyrimidine etravirine has demonstrated durable efficacy for patients infected with NNRTI-resistant HIV-1. A screening strategy used to test NNRTI candidates from the same series as etravirine identified TMC278 (rilpivirine). TMC278 is an NNRTI showing subnanomolar 50% effective concentrations (EC50 values) against wild-type HIV-1 group M isolates (0.07 to 1.01 nM) and nanomolar EC50 values against group O isolates (2.88 to 8.45 nM). Sensitivity to TMC278 was not affected by the presence of most single NNRTI resistance-associated mutations (RAMs), including those at positions 100, 103, 106, 138, 179, 188, 190, 221, 230, and 236. The HIV-1 site-directed mutant with Y181C was sensitive to TMC278, whereas that with K101P or Y181I/V was resistant. In vitro, considerable cross-resistance between TMC278 and etravirine was observed. Sensitivity to TMC278 was observed for 62% of efavirenz- and/or nevirapine-resistant HIV-1 recombinant clinical isolates. TMC278 inhibited viral replication at concentrations at which first-generation NNRTIs could not suppress replication. The rates of selection of TMC278-resistant strains were comparable among HIV-1 group M subtypes. NNRTI RAMs emerging in HIV-1 under selective pressure from TMC278 included combinations of V90I, L100I, K101E, V106A/I, V108I, E138G/K/Q/R, V179F/I, Y181C/I, V189I, G190E, H221Y, F227C, and M230I/L. E138R was identified as a new NNRTI RAM. These in vitro analyses demonstrate that TMC278 is a potent next-generation NNRTI, with a high genetic barrier to resistance development.
European Journal of Pharmaceutics and Biopharmaceutics | 2009
Lieven Baert; Gerben van 't Klooster; Willy Maria Albert Carlo Dries; Marc Karel Jozef Francois; Alfons Wouters; Esther Dina Guido Basstanie; Koen Iterbeke; Fred Stappers; Paul Stevens; Laurent Schueller; Pieter Van Remoortere; Guenter Kraus; Piet Tom Bert Paul Wigerinck; Jan Rosier
Long-acting parenteral formulations of antiretrovirals could facilitate maintenance and prophylactic treatment in HIV. Using the poorly water- and oil-soluble non-nucleoside reverse transcriptase inhibitor (NNRTI) TMC278 (rilpivirine) as base or hydrochloride (HCl), nanosuspensions were prepared by wet milling (Elan NanoCrystal technology) in an aqueous carrier. Laser diffraction showed that the average particles size were (1) close to the targeted size proportionality (200-400-800 nm), with increasing distributions the larger the average particle size, and (2) were stable over 6 months. Following single-dose administration, the plasma concentration profiles showed sustained release of TMC278 over 3 months in dogs and 3 weeks in mice. On comparison of intramuscular and subcutaneous injection of 5mg/kg (200 nm) in dogs, the subcutaneous route resulted in the most stable plasma levels (constant at 25 ng/mL for 20 days, after which levels declined slowly to 1-3 ng/mL at 3 months); 200 nm nanosuspensions achieved higher and less variable plasma concentration profiles than 400 and 800 nm nanosuspensions. In mice, the pharmacokinetic profiles after a single 20mg/kg dose (200 nm) were similar with two different surfactants used (poloxamer 338, or d-alpha-tocopheryl polyethylene glycol 1000 succinate). In conclusion, this study provides proof-of-concept that 200-nm sized TMC278 nanosuspensions may act as long-acting injectable.
PLOS ONE | 2012
Marc Nischang; Roger Sutmuller; Gustavo Gers-Huber; Annette Audigé; Duo Li; Mary-Aude Rochat; Stefan Baenziger; Ursula Hofer; Erika Schlaepfer; Stephan Regenass; Katie Ingrid Eduard Amssoms; Bart Stoops; Anja Van Cauwenberge; Daniel Boden; Guenter Kraus; Roberto F. Speck
Background Humanized mice generate a lymphoid system of human origin subsequent to transplantation of human CD34+ cells and thus are highly susceptible to HIV infection. Here we examined the efficacy of antiretroviral treatment (ART) when added to food pellets, and of long-acting (LA) antiretroviral compounds, either as monotherapy or in combination. These studies shall be inspiring for establishing a gold standard of ART, which is easy to administer and well supported by the mice, and for subsequent studies such as latency. Furthermore, they should disclose whether viral breakthrough and emergence of resistance occurs similar as in HIV-infected patients when ART is insufficient. Methods/Principal Findings NOD/shi-scid/γcnull (NOG) mice were used in all experimentations. We first performed pharmacokinetic studies of the drugs used, either added to food pellets (AZT, TDF, 3TC, RTV) or in a LA formulation that permitted once weekly subcutaneous administration (TMC278: non-nucleoside reverse transcriptase inhibitor, TMC181: protease inhibitor). A combination of 3TC, TDF and TMC278-LA or 3TC, TDF, TMC278-LA and TMC181-LA suppressed the viral load to undetectable levels in 15/19 (79%) and 14/14 (100%) mice, respectively. In successfully treated mice, subsequent monotherapy with TMC278-LA resulted in viral breakthrough; in contrast, the two LA compounds together prevented viral breakthrough. Resistance mutations matched the mutations most commonly observed in HIV patients failing therapy. Importantly, viral rebound after interruption of ART, presence of HIV DNA in successfully treated mice and in vitro reactivation of early HIV transcripts point to an existing latent HIV reservoir. Conclusions/Significance This report is a unique description of multiple aspects of HIV infection in humanized mice that comprised efficacy testing of various treatment regimens, including LA compounds, resistance mutation analysis as well as viral rebound after treatment interruption. Humanized mice will be highly valuable for exploring the antiviral potency of new compounds or compounds targeting the latent HIV reservoir.
Antimicrobial Agents and Chemotherapy | 2011
Inge Dierynck; Herwig Van Marck; Marcia Van Ginderen; Tim Hugo Maria Jonckers; Madhavi N. L. Nalam; Celia A. Schiffer; Araz Raoof; Guenter Kraus; G. Picchio
ABSTRACT TMC310911 is a novel human immunodeficiency virus type 1 (HIV-1) protease inhibitor (PI) structurally closely related to darunavir (DRV) but with improved virological characteristics. TMC310911 has potent activity against wild-type (WT) HIV-1 (median 50% effective concentration [EC50], 14 nM) and a wide spectrum of recombinant HIV-1 clinical isolates, including multiple-PI-resistant strains with decreased susceptibility to currently approved PIs (fold change [FC] in EC50, >10). For a panel of 2,011 recombinant clinical isolates with decreased susceptibility to at least one of the currently approved PIs, the FC in TMC310911 EC50 was ≤4 for 82% of isolates and ≤10 for 96% of isolates. The FC in TMC310911 EC50 was ≤4 and ≤10 for 72% and 94% of isolates with decreased susceptibility to DRV, respectively. In vitro resistance selection (IVRS) experiments with WT virus and TMC310911 selected for mutations R41G or R41E, but selection of resistant virus required a longer time than IVRS performed with WT virus and DRV. IVRS performed with r13025, a multiple-PI-resistant recombinant clinical isolate, and TMC310911 selected for mutations L10F, I47V, and L90M (FC in TMC310911 EC50 = 16). IVRS performed with r13025 in the presence of DRV required less time and resulted in more PI resistance-associated mutations (V32I, I50V, G73S, L76V, and V82I; FC in DRV EC50 = 258). The activity against a comprehensive panel of PI-resistant mutants and the limited in vitro selection of resistant viruses under drug pressure suggest that TMC310911 represents a potential drug candidate for the management of HIV-1 infection for a broad range of patients, including those with multiple PI resistance.
Journal of Virology | 2009
H. Van Marck; Inge Dierynck; Guenter Kraus; S. Hallenberger; T. Pattery; G. Muyldermans; L. Geeraert; L. Borozdina; R. Bonesteel; C. Aston; E. Shaw; Q. Chen; C. Martinez; V. Koka; J. Lee; E. Chi; M.-P. de Béthune; Kurt Hertogs
ABSTRACT The requirement for multiple mutations for protease inhibitor (PI) resistance necessitates a better understanding of the molecular basis of resistance development. The novel bioinformatics resistance determination approach presented here elaborates on genetic profiles observed in clinical human immunodeficiency virus type 1 (HIV-1) isolates. Synthetic protease sequences were cloned in a wild-type HIV-1 background to generate a large number of close variants, covering 69 mutation clusters between multi-PI-resistant viruses and their corresponding genetically closely related, but PI-susceptible, counterparts. The vast number of mutants generated facilitates a profound and broad analysis of the influence of the background on the effect of individual PI resistance-associated mutations (PI-RAMs) on PI susceptibility. Within a set of viruses, all PI-RAMs that differed between susceptible and resistant viruses were varied while maintaining the background sequence from the resistant virus. The PI darunavir was used to evaluate PI susceptibility. Single sets allowed delineation of the impact of individual mutations on PI susceptibility, as well as the influence of PI-RAMs on one another. Comparing across sets, it could be inferred how the background influenced the interaction between two mutations, in some cases even changing antagonistic relationships into synergistic ones or vice versa. The approach elaborates on patient data and demonstrates how the specific mutational background greatly influences the impact of individual mutations on PI susceptibility in clinical patterns.
PLOS ONE | 2018
Katie Amssoms; Philip A. Born; Max Beugeling; Ben De Clerck; Ellen Van Gulck; Wouter L. J. Hinrichs; Henderik W. Frijlink; Niels Grasmeijer; Guenter Kraus; Roger Sutmuller; Kenny Simmen; Lieven Baert
A single-injection vaccine formulation that provides for both a prime and a boost immunization would have various advantages over a multiple-injection regime. For such a vaccine formulation, it is essential that the booster dose is released after a certain, preferably adjustable, lag time. In this study we investigated whether a core-shell based implant, containing ovalbumin as core material and poly(DL-lactic-co-glycolic acid) of various monomer ratios as shell material can be used to obtain such a booster release. An in vitro release study showed that the lag time after which the ovalbumin was released from the core-shell implant increased with increasing lactic to glycolic acid ratio of the polymer and ranged from 3–6 weeks. Fluorescence spectroscopy showed minimal differences between native ovalbumin and ovalbumin from core-shell implants that were incubated until just before the observed in vitro release. In addition, mice immunized with a subcutaneous inserted core-shell implant containing ovalbumin showed an ovalbumin-specific IgG1 antibody response after a lag time of 4 or 6–8 weeks. Moreover, delayed release of ovalbumin caused higher IgG1 antibody titers than conventional subcutaneous vaccination with ovalbumin dissolved in PBS. Collectively, these findings could contribute to the further development of a single-injection vaccine, making multiple injections of the vaccine superfluous.
Archive | 2007
Inky Paul Madeleine De Baere; Guenter Kraus; Laurence Tatiana Ramsky; Bart Anna Julien Maes; Hilde Azijn; Marie-Pierre de Béthune
Archive | 2010
Deborah M. Schachter; Lieven Baert; Guenter Kraus; Qiang Zhang; Iksoo Chun
Archive | 2010
Deborah M. Schachter; Lieven Baert; Guenter Kraus; Qiang Zhang; Iksoo Chun
Archive | 2007
Lieven Baert; Guenter Kraus; T Klooster Gerben Albert E Van