Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Guenther Witzany is active.

Publication


Featured researches published by Guenther Witzany.


Journal of Theoretical Biology | 2010

Viruses are essential agents within the roots and stem of the tree of life.

Luis P. Villarreal; Guenther Witzany

In contrast with former definitions of life limited to membrane-bound cellular life forms which feed, grow, metabolise and replicate (i) a role of viruses as genetic symbionts, (ii) along with peripheral phenomena such as cryptobiosis and (iii) the horizontal nature of genetic information acquisition and processing broaden our view of the tree of life. Some researchers insist on the traditional textbook conviction of what is part of the community of life. In a recent review [Moreira, D., Lopez-Garcia, P., 2009. Ten reasons to exclude viruses from the tree of life. Nat. Rev. Microbiol. 7, 306-311.] they assemble four main arguments which should exclude viruses from the tree of life because of their inability to self-sustain and self-replicate, their polyphyly, the cellular origin of their cell-like genes and the volatility of their genomes. In this article we will show that these features are not coherent with current knowledge about viruses but that viral agents play key roles within the roots and stem of the tree of life.


World Journal of Biological Chemistry | 2010

Biocommunication and natural genome editing

Guenther Witzany

The biocommunicative approach investigates communication processes within and among cells, tissues, organs and organisms as sign-mediated interactions, and nucleotide sequences as code, i.e. language-like text, which follows in parallel three kinds of rules: combinatorial (syntactic), context-sensitive (pragmatic), and content-specific (semantic). Natural genome editing from a biocommunicative perspective is competent agent-driven generation and integration of meaningful nucleotide sequences into pre-existing genomic content arrangements and the ability to (re-)combine and (re-)regulate them according to context-dependent (i.e. adaptational) purposes of the host organism.


Journal of Molecular Cell Biology | 2011

The agents of natural genome editing

Guenther Witzany

The DNA serves as a stable information storage medium and every protein which is needed by the cell is produced from this blueprint via an RNA intermediate code. More recently it was found that an abundance of various RNA elements cooperate in a variety of steps and substeps as regulatory and catalytic units with multiple competencies to act on RNA transcripts. Natural genome editing on one side is the competent agent-driven generation and integration of meaningful DNA nucleotide sequences into pre-existing genomic content arrangements, and the ability to (re-)combine and (re-)regulate them according to context-dependent (i.e. adaptational) purposes of the host organism. Natural genome editing on the other side designates the integration of all RNA activities acting on RNA transcripts without altering DNA-encoded genes. If we take the genetic code seriously as a natural code, there must be agents that are competent to act on this code because no natural code codes itself as no natural language speaks itself. As code editing agents, viral and subviral agents have been suggested because there are several indicators that demonstrate viruses competent in both RNA and DNA natural genome editing.


Archive | 2012

Biocommunication of Plants

Guenther Witzany; František Baluška

Plants are sessile, highly sensitive organisms that actively compete for environmental resources both above and below the ground. They assess their surroundings, estimate how much energy they need for particular goals, and then realise the optimum variant. They take measures to control certain environmental resources. They perceive themselves and can distinguish between ‘self’ and ‘non-self’. They process and evaluate information and then modify their behaviour accordingly. These highly diverse competences are made possible by parallel sign(alling)-mediated communication processes within the plant body (intraorganismic), between the same, related and different species (interorganismic), and between plants and non-plant organisms (transorganismic). Intraorganismic communication involves sign-mediated interactions within cells (intracellular) and between cells (intercellular). This is crucial in coordinating growth and development, shape and dynamics. Such communication must function both on the local level and between widely separated plant parts. This allows plants to coordinate appropriate response behaviours in a differentiated manner, depending on their current developmental status and physiological influences. Lastly, this volume documents how plant ecosphere inhabitants communicate with each other to coordinate their behavioural patterns, as well as the role of viruses in these highly dynamic interactional networks.


Biosemiotics | 2008

The Viral Origins of Telomeres and Telomerases and their Important Role in Eukaryogenesis and Genome Maintenance

Guenther Witzany

Whereas telomeres protect terminal ends of linear chromosomes, telomerases identify natural chromosome ends, which differ from broken DNA and replicate telomeres. Although telomeres play a crucial role in the linear chromosome organization of eukaryotic cells, their molecular syntax most probably descended from an ancient retroviral competence. This indicates an early retroviral colonization of large double-stranded DNA viruses, which are putative ancestors of the eukaryotic nucleus. This contribution demonstrates an advantage of the biosemiotic approach towards our evolutionary understanding of telomeres, telomerases, other reverse transcriptases and mobile elements. Their role in genetic/genomic content organization and maintenance is no longer viewed as an object of randomly derived alterations (mutations) but as a highly sophisticated hierarchy of regulatory networks organized and coordinated by natural genome-editing competences of viruses.


Genomics Insights | 2013

The DNA Habitat and its RNA Inhabitants: At the Dawn of RNA Sociology

Luis P. Villarreal; Guenther Witzany

Most molecular biological concepts derive from physical chemical assumptions about the genetic code that are basically more than 40 years old. Additionally, systems biology, another quantitative approach, investigates the sum of interrelations to obtain a more holistic picture of nucleotide sequence order. Recent empirical data on genetic code compositions and rearrangements by mobile genetic elements and noncoding RNAs, together with results of virus research and their role in evolution, does not really fit into these concepts and compel a reexamination. In this review, we try to find an alternate hypothesis. It seems plausible now that if we look at the abundance of regulatory RNAs and persistent viruses in host genomes, we will find more and more evidence that the key players that edit the genetic codes of host genomes are consortia of RNA agents and viruses that drive evolutionary novelty and regulation of cellular processes in all steps of development. This agent-based approach may lead to a qualitative RNA sociology that investigates and identifies relevant behavioral motifs of cooperative RNA consortia. In addition to molecular biological perspectives, this may lead to a better understanding of genetic code evolution and dynamics.


Journal of Molecular Evolution | 2015

When Competing Viruses Unify: Evolution, Conservation, and Plasticity of Genetic Identities.

Luis P. Villarreal; Guenther Witzany

Abstract In the early 1970s, Manfred Eigen and colleagues developed the quasispecies model (qs) for the population-based origin of RNAs representing the early genetic code. The Eigen idea is basically that a halo of mutants is generated by error-prone replication around the master fittest type which will behave similarly as a biological population. But almost from the start, very interesting and unexpected observations were made regarding competition versus co-operation which suggested more complex interactions. It thus became increasingly clear that although viruses functioned similar to biological species, their behavior was much more complex than the original theory could explain, especially adaptation without changing the consensus involving minority populations. With respect to the origin of natural codes, meaning, and code-use in interactions (communication), it also became clear that individual fittest type-based mechanisms were likewise unable to explain the origin of natural codes such as the genetic code with their context- and consortia-dependence (pragmatic nature). This, instead, required the participation of groups of agents competent in the code and able to edit code because natural codes do not code themselves. Three lines of inquiry, experimental virology, quasispecies theory, and the study of natural codes converged to indicate that consortia of co-operative RNA agents such as viruses must be involved in the fitness of RNA and its involvement in communication, i.e., code–competent interactions. We called this co-operative form quasispecies consortia (qs-c). They are the essential agents that constitute the possibility of evolution of biological group identity. Finally, the basic interactional motifs for the emergence of group identity, communication, and co-operation—together with its opposing functions—are explained by the “Gangen” hypothesis.


Communicative & Integrative Biology | 2011

Can mathematics explain the evolution of human language

Guenther Witzany

Investigation into the sequence structure of the genetic code by means of an informatic approach is a real success story. The features of human language are also the object of investigation within the realm of formal language theories. They focus on the common rules of a universal grammar that lies behind all languages and determine generation of syntactic structures. This universal grammar is a depiction of material reality, i.e. the hidden logical order of things and its relations determined by natural laws. Therefore mathematics is viewed not only as an appropriate tool to investigate human language and genetic code structures through computer science-based formal language theory but is itself a depiction of material reality. This confusion between language as a scientific tool to describe observations/experiences within cognitive constructed models and formal language as a direct depiction of material reality occurs not only in current approaches but was the central focus of the philosophy of science debate in the twentieth century, with rather unexpected results. This article recalls these results and their implications for more recent mathematical approaches that also attempt to explain the evolution of human language.


Annals of the New York Academy of Sciences | 2015

Life is physics and chemistry and communication

Guenther Witzany

Manfred Eigen extended Erwin Schroedingers concept of “life is physics and chemistry” through the introduction of information theory and cybernetic systems theory into “life is physics and chemistry and information.” Based on this assumption, Eigen developed the concepts of quasispecies and hypercycles, which have been dominant in molecular biology and virology ever since. He insisted that the genetic code is not just used metaphorically: it represents a real natural language. However, the basics of scientific knowledge changed dramatically within the second half of the 20th century. Unfortunately, Eigen ignored the results of the philosophy of science discourse on essential features of natural languages and codes: a natural language or code emerges from populations of living agents that communicate. This contribution will look at some of the highlights of this historical development and the results relevant for biological theories about life.


Biosemiotics | 2011

Natural Genome Editing from a Biocommunicative Perspective

Guenther Witzany

Natural genome editing from a biocommunicative perspective is the competent agent-driven generation and integration of meaningful nucleotide sequences into pre-existing genomic content arrangements, and the ability to (re-)combine and (re-)regulate them according to context-dependent (i.e. adaptational) purposes of the host organism. Natural genome editing integrates both natural editing of genetic code and epigenetic marking that determines genetic reading patterns. As agents that edit genetic code and epigenetically mark genomic structures, viral and subviral agents have been suggested because they may be evolutionarily older than cellular life. This hypothesis that viruses and viral-like agents edit genetic code is developed according to three well investigated examples that represent key evolutionary inventions in which non-lytic viral swarms act symbiotically in a persistent lifestyle within cellular host genomes: origin of eukaryotic nucleus, adaptive immunity, placental mammals. Additionally an abundance of various RNA elements cooperate in a variety of steps and substeps as regulatory and catalytic units with multiple competencies to act on the genetic code. Most of these RNA agents such as transposons, retroposons and small non-coding RNAs act consortially and are remnants of persistent viral infections that now act as co-opted adaptations in cellular key processes.

Collaboration


Dive into the Guenther Witzany's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pierre Madl

University of Salzburg

View shared research outputs
Researchain Logo
Decentralizing Knowledge