Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Guhuan Liu is active.

Publication


Featured researches published by Guhuan Liu.


Journal of the American Chemical Society | 2015

Cell-Penetrating Hyperbranched Polyprodrug Amphiphiles for Synergistic Reductive Milieu-Triggered Drug Release and Enhanced Magnetic Resonance Signals

Xianglong Hu; Guhuan Liu; Yang Li; Xiaorui Wang; Shiyong Liu

The rational design of theranostic nanoparticles exhibiting synergistic turn-on of therapeutic potency and enhanced diagnostic imaging in response to tumor milieu is critical for efficient personalized cancer chemotherapy. We herein fabricate self-reporting theranostic drug nanocarriers based on hyperbranched polyprodrug amphiphiles (hPAs) consisting of hyperbranched cores conjugated with reduction-activatable camptothecin prodrugs and magnetic resonance (MR) imaging contrast agent (Gd complex), and hydrophilic coronas functionalized with guanidine residues. Upon cellular internalization, reductive milieu-actuated release of anticancer drug in the active form, activation of therapeutic efficacy (>70-fold enhancement in cytotoxicity), and turn-on of MR imaging (∼9.6-fold increase in T1 relaxivity) were simultaneously achieved in the simulated cytosol milieu. In addition, guanidine-decorated hPAs exhibited extended blood circulation with a half-life up to ∼9.8 h and excellent tumor cell penetration potency. The hyperbranched chain topology thus provides a novel theranostic polyprodrug platform for synergistic imaging/chemotherapy and enhanced tumor uptake.


Journal of the American Chemical Society | 2014

Self-Immolative Polymersomes for High-Efficiency Triggered Release and Programmed Enzymatic Reactions

Guhuan Liu; Xiaorui Wang; Jinming Hu; Guoying Zhang; Shiyong Liu

Stimuli-triggered disassembly of block copolymer vesicles or polymersomes has been conventionally achieved via solubility switching of the bilayer-forming block, requiring cooperative changes of most of the repeating units. Herein we report an alternative approach by incorporating hydrophobic blocks exhibiting stimuli-triggered head-to-tail cascade depolymerization features. Amphiphilic block copolymers bearing this motif self-assemble into self-immolative polymersomes (SIPsomes). By modular design of terminal capping moieties, visible light, UV light, and reductive milieu can be utilized to actuate SIPsomes disintegration into water-soluble small molecules and hydrophilic blocks. The design of SIPsomes allows for triggered drug co-release and controllable access toward protons, oxygen, and enzymatic substrates. We also demonstrate programmed (OR-, AND-, and XOR-type logic) enzymatic reactions by integrating SIPsome encapsulation and trigger/capping moiety-selective cascade depolymerization events.


Angewandte Chemie | 2014

Concurrent Block Copolymer Polymersome Stabilization and Bilayer Permeabilization by Stimuli‐Regulated “Traceless” Crosslinking

Xiaorui Wang; Guhuan Liu; Jinming Hu; Guoying Zhang; Shiyong Liu

The fabrication of block copolymer (BCP) vesicles (polymersomes) exhibiting synchronized covalent crosslinking and bilayer permeabilization remains a considerable challenge as crosslinking typically leads to compromised membrane permeability. Herein it is demonstrated how to solve this dilemma by employing a stimuli-triggered crosslinking strategy with amphiphilic BCPs containing photolabile carbamate-caged primary amines. Upon self-assembling into polymersomes, light-triggered self-immolative decaging reactions release primary amine moieties and extensive amidation reactions then occur due to suppressed amine pKa within hydrophobic milieu. This leads to serendipitous vesicle crosslinking and the process is associated with bilayer hydrophobicity-to-hydrophilicity transition and membrane permeabilization.


Journal of the American Chemical Society | 2016

Engineering Intracellular Delivery Nanocarriers and Nanoreactors from Oxidation-Responsive Polymersomes via Synchronized Bilayer Cross-Linking and Permeabilizing Inside Live Cells

Zhengyu Deng; Yinfeng Qian; Yongqiang Yu; Guhuan Liu; Jinming Hu; Guoying Zhang; Shiyong Liu

Reactive oxygen species (ROS) and oxidative stress are implicated in various physiological and pathological processes, and this feature provides a vital biochemical basis for designing novel therapeutic and diagnostic nanomedicines. Among them, oxidation-responsive micelles and vesicles (polymersomes) of amphiphilic block copolymers have been extensively explored; however, in previous works, oxidation by ROS including H2O2 exclusively leads to microstructural destruction of polymeric assemblies. For oxidation-responsive polymersomes, fast release of encapsulated hydrophilic drugs and bioactive macromolecules will occur upon microstructural disintegration. Under certain application circumstances, this does not meet design requirements for sustained-release drug nanocarriers and long-acting in vivo nanoreactors. Also note that conventional polymersomes possess thick hydrophobic bilayers and compromised membrane permeability, rendering them as ineffective nanocarriers and nanoreactors. We herein report the fabrication of oxidation-responsive multifunctional polymersomes exhibiting intracellular milieu-triggered vesicle bilayer cross-linking, permeability switching, and enhanced imaging/drug release features. Mitochondria-targeted H2O2 reactive polymersomes were obtained through the self-assembly of amphiphilic block copolymers containing arylboronate ester-capped self-immolative side linkages in the hydrophobic block, followed by surface functionalization with targeting peptides. Upon cellular uptake, intracellular H2O2 triggers cascade decaging reactions and generates primary amine moieties; prominent amidation reaction then occurs within hydrophobic bilayer membranes, resulting in concurrent cross-linking and hydrophobic-to-hydrophilic transition of polymersome bilayers inside live cells. This process was further utilized to achieve integrated functions such as sustained drug release, (combination) chemotherapy monitored by fluorescence and magnetic resonance (MR) imaging turn-on, and to construct intracellular fluorogenic nanoreactors for cytosolic thiol-containing bioactive molecules.


Angewandte Chemie | 2016

Enzyme‐Responsive Polymeric Vesicles for Bacterial Strain‐Selective Delivery of Antimicrobial Agents

Yamin Li; Guhuan Liu; Xiaorui Wang; Jinming Hu; Shiyong Liu

Antimicrobial resistance poses serious public health concerns and antibiotic misuse/abuse further complicates the situation; thus, it remains a considerable challenge to optimize/improve the usage of currently available drugs. We report a general strategy to construct a bacterial strain-selective delivery system for antibiotics based on responsive polymeric vesicles. In response to enzymes including penicillin G amidase (PGA) and β-lactamase (Bla), which are closely associated with drug-resistant bacterial strains, antibiotic-loaded polymeric vesicles undergo self-immolative structural rearrangement and morphological transitions, leading to sustained release of antibiotics. Enhanced stability, reduced side effects, and bacterial strain-selective drug release were achieved. Considering that Bla is the main cause of bacterial resistance to β-lactam antibiotic drugs, as a further validation, we demonstrate methicillin-resistant S. aureus (MRSA)-triggered release of antibiotics from Bla-degradable polymeric vesicles, in vitro inhibition of MRSA growth, and enhanced wound healing in an in vivo murine model.


Journal of the American Chemical Society | 2015

Hyperbranched Self-Immolative Polymers (hSIPs) for Programmed Payload Delivery and Ultrasensitive Detection

Guhuan Liu; Guofeng Zhang; Jinming Hu; Xiaorui Wang; Mingqiang Zhu; Shiyong Liu

Upon stimuli-triggered single cleavage of capping moieties at the focal point and chain terminal, self-immolative dendrimers (SIDs) and linear self-immolative polymers (l-SIPs) undergo spontaneous domino-like radial fragmentation and cascade head-to-tail depolymerization, respectively. The nature of response selectivity and signal amplification has rendered them a unique type of stimuli-responsive materials. Moreover, novel design principles are required for further advancement in the field of self-immolative polymers (SIPs). Herein, we report the facile fabrication of water-dispersible SIPs with a new chain topology, hyperbranched self-immolative polymers (hSIPs), by utilizing one-pot AB2 polycondensation methodology and sequential postfunctionalization. The modular engineering of three categories of branching scaffolds, three types of stimuli-cleavable capping moieties at the focal point, and seven different types of peripheral functional groups and polymeric building blocks affords both structurally and functionally diverse hSIPs with chemically tunable amplified-release features. On the basis of the hSIP platform, we explored myriad functions including visible light-triggered intracellular release of peripheral conjugated drugs in a targeted and spatiotemporally controlled fashion, intracellular delivery and cytoplasmic reductive milieu-triggered plasmid DNA release via on/off multivalency switching, mitochondria-targeted fluorescent sensing of H2O2 with a detection limit down to ∼20 nM, and colorimetric H2O2 assay via triggered dispersion of gold nanoparticle aggregates. To further demonstrate the potency and generality of the hSIP platform, we further configure it into biosensor design for the ultrasensitive detection of pathologically relevant antigens (e.g., human carcinoembryonic antigen) by integrating with enzyme-mediated cycle amplification with positive feedback and enzyme-linked immunosorbent assay (ELISA).


Bioconjugate Chemistry | 2015

Rationally Engineering Phototherapy Modules of Eosin-Conjugated Responsive Polymeric Nanocarriers via Intracellular Endocytic pH Gradients.

Guhuan Liu; Jinming Hu; Guoying Zhang; Shiyong Liu

Spatiotemporal switching of respective phototherapy modes at the cellular level with minimum side effects and high therapeutic efficacy is a major challenge for cancer phototherapy. Herein we demonstrate how to address this issue by employing photosensitizer-conjugated pH-responsive block copolymers in combination with intracellular endocytic pH gradients. At neutral pH corresponding to extracellular and cytosol milieu, the copolymers self-assemble into micelles with prominently quenched fluorescence emission and low (1)O2 generation capability, favoring a highly efficient photothermal module. Under mildly acidic pH associated with endolysosomes, protonation-triggered micelle-to-unimer transition results in recovered emission and enhanced photodynamic (1)O2 efficiency, which synergistically actuates release of encapsulated drugs, endosomal escape, and photochemical internalization processes.


Journal of Controlled Release | 2017

Photo- and thermo-responsive multicompartment hydrogels for synergistic delivery of gemcitabine and doxorubicin.

Cheng Wang; Guoying Zhang; Guhuan Liu; Jinming Hu; Shiyong Liu

ABSTRACT Hydrogels have found promising applications in drug delivery due to their biocompatibility, high drug loading capability, and tunable release profiles. However, hydrogel‐based carriers are primarily employed for delivering hydrophilic payloads while hydrophobic drugs cannot be efficiently delivered due to the lack of hydrophobic domains within conventional hydrogel matrices. Herein, we report that thermo‐ and photo‐responsive hydrogels could be constructed from amphiphilic triblock copolymers, poly(N‐isopropylacrylamide)‐b‐poly(4‐acryloylmorpholine)‐b‐poly(2‐((((2‐nitrobenzyl)oxy)carbonyl) amino)ethyl methacrylate) (PNIPAM‐b‐PNAM‐b‐PNBOC), and the resulting hydrogels could be further engineered a new carrier for both hydrophilic gemcitabine (GCT) and hydrophobic doxorubicin (DOX). PNIPAM‐b‐PNAM‐b‐PNBOC triblock copolymers were first self‐assembled into micelles with hydrophobic photosensitive PNBOC cores, hydrophilic PNAM inner shells, and thermoresponsive PNIPAM coronas below the lower critical solution temperature (LCST), while hydrogels of physically cross‐linked micellar nanoparticles were achieved at elevated polymer concentrations and high temperatures above the critical gelation temperature (CGT). Rheological experiments revealed that the CGT was highly dependent on polymer compositions and concentrations, that is, a longer hydrophobic PNBOC block or a higher polymer concentration led to a decreased CGT. However, the CGT prior to UV irradiation (CGT0) could be drastically elevated after UV irradiation (CGTUV) as a result of UV irradiation‐induced concurrently cross‐linking and hydrophobic‐to‐hydrophilic transition within PNBOC cores. As such, gel‐to‐sol transition could be accomplished by either temperature decrease or exposure to UV irradiation at a fixed temperature lower than the CGTUV. Note that both GCT and DOX could be simultaneously encapsulated into the hydrogels due to the coexistence of extramicellar aqueous phase and hydrophobic micellar cores. Intriguingly, the subsequent co‐release of GCT and DOX could be regulated by taking advantage of either temperature or UV irradiation‐mediated gel‐to‐sol transitions. Graphical abstract Figure. No caption available.


ACS Applied Materials & Interfaces | 2016

pH-Regulated Reversible Transition Between Polyion Complexes (PIC) and Hydrogen-Bonding Complexes (HBC) with Tunable Aggregation-Induced Emission

Sidan Tian; Guhuan Liu; Xiaorui Wang; Tao Wu; Jinxian Yang; Xiaodong Ye; Guoying Zhang; Jinming Hu; Shiyong Liu

The mimicking of biological supramolecular interactions and their mutual transitions to fabricate intelligent artificial systems has been of increasing interest. Herein, we report the fabrication of supramolecular micellar nanoparticles consisting of quaternized poly(ethylene oxide)-b-poly(2-dimethylaminoethyl methacrylate) (PEO-b-PQDMA) and tetrakis(4-carboxylmethoxyphenyl)ethene (TPE-4COOH), which was capable of reversible transition between polyion complexes (PIC) and hydrogen bonding complexes (HBC) with tunable aggregation-induced emission (AIE) mediated by solution pH. At pH 8, TPE-4COOH chromophores can be directly dissolved in aqueous milieu without evident fluorescence emission. However, upon mixing with PEO-b-PQDMA, polyion complexes were formed by taking advantage of electrostatic interaction between carboxylate anions and quaternary ammonium cations and the most compact PIC micelles were achieved at the isoelectric point (i.e., [QDMA(+)]/[COO(-)] = 1), as confirmed by dynamic light scattering (DLS) measurement. Simultaneously, fluorescence spectroscopy revealed an evident emission turn-on and the maximum fluorescence intensity was observed near the isoelectric point due to the restriction of intramolecular rotation of TPE moieties within the PIC cores. The kinetic study supported a micelle fusion/fission mechanism on the formation of PIC micelles at varying charge ratios, exhibiting a quick time constant (τ1) relating to the formation of quasi-equilibrium micelles and a slow time constant (τ2) corresponding to the formation of final equilibrium micelles. Upon deceasing the pH of PIC micelles from 8 to 2 at the [QDMA(+)]/[COO(-)] molar ratio of 1, TPE-4COOH chromophores became gradually protonated and hydrophobic. The size of micellar nanoparticles underwent a remarkable decrease, whereas the fluorescence intensity exhibited a further increase by approximately 7.35-fold, presumably because of the formation of HBC micelles comprising cationic PQDMA coronas and PEO/TPE-4COOH hydrogen-bonded cores, an inverted micellar structures compared to initial PIC micelles. Moreover, the pH-mediated schizophrenic micellar transition from PIC to HBC with tunable AIE characteristic was reversible.


Biomacromolecules | 2017

Near-Infrared Light-Activated Photochemical Internalization of Reduction-Responsive Polyprodrug Vesicles for Synergistic Photodynamic Therapy and Chemotherapy

Kangning Zhu; Guhuan Liu; Jinming Hu; Shiyong Liu

The use of intracellular reductive microenvironment to control the release of therapeutic payloads has emerged as a popular approach to design and fabricate intelligent nanocarriers. However, these reduction-responsive nanocarriers are generally trapped within endolysosomes after internalization and are subjected to unwanted disintegration, remarkably compromising the therapeutic performance. Herein, amphiphilic polyprodrugs of poly(N,N-dimethylacrylamide-co-EoS)-b-PCPTM were synthesized via sequential reversible addition-fragmentation chain transfer (RAFT) polymerization, where EoS and CPTM are Eosin Y- and camptothecin (CPT)-based monomers, respectively. An oil-in-water (O/W) emulsion method was applied to self-assemble the amphiphilic polyprodrugs into hybrid vesicles in the presence of hydrophobic oleic acid (OA)-stabilized upconversion nanoparticles (UCNPs, NaYF4:Yb/Er), rendering it possible to activate the EoS photosensitizer under a near-infrared (NIR) laser irradiation with the generation of singlet oxygen (1O2) through the energy transfer between UCNPs and EoS moieties. Notably, the in situ generated singlet oxygen (1O2) can not only exert its photodynamic therapy (PDT) effect but also disrupt the membranes of endolysosomes and thus facilitate the endosomal escape of internalized nanocarriers (i.e., photochemical internalization (PCI)). Cell experiments revealed that the hybrid vesicles could be facilely taken up by endocytosis. Although the internalized hybrid vesicles were initially trapped within endolysosomes, a remarkable endosomal escape into the cytoplasm was observed under 980 nm laser irradiation as a result of the PCI effect of 1O2. The escaped hybrid vesicles subsequently underwent GSH-triggered CPT release in the cytosol, thereby activating the chemotherapy process. The integration of PDT module into the design of reduction-responsive nanocarriers provides a feasible approach to enhance the therapeutic performance.

Collaboration


Dive into the Guhuan Liu's collaboration.

Top Co-Authors

Avatar

Shiyong Liu

University of Science and Technology of China

View shared research outputs
Top Co-Authors

Avatar

Jinming Hu

University of Science and Technology of China

View shared research outputs
Top Co-Authors

Avatar

Guoying Zhang

University of Science and Technology of China

View shared research outputs
Top Co-Authors

Avatar

Xiaorui Wang

University of Science and Technology of China

View shared research outputs
Top Co-Authors

Avatar

Kangning Zhu

University of Science and Technology of China

View shared research outputs
Top Co-Authors

Avatar

Zhengyu Deng

University of Science and Technology of China

View shared research outputs
Top Co-Authors

Avatar

Cheng Wang

University of Science and Technology of China

View shared research outputs
Top Co-Authors

Avatar

Haojun Liang

University of Science and Technology of China

View shared research outputs
Top Co-Authors

Avatar

Sidan Tian

University of Science and Technology of China

View shared research outputs
Top Co-Authors

Avatar

Xianglong Hu

South China Normal University

View shared research outputs
Researchain Logo
Decentralizing Knowledge