Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gui-Qiu Yu is active.

Publication


Featured researches published by Gui-Qiu Yu.


Neuron | 2007

Aberrant Excitatory Neuronal Activity and Compensatory Remodeling of Inhibitory Hippocampal Circuits in Mouse Models of Alzheimer's Disease

Jorge J. Palop; Jeannie Chin; Erik D. Roberson; Jun Wang; Myo T. Thwin; Nga Bien-Ly; Jong Yoo; Kaitlyn Ho; Gui-Qiu Yu; Anatol C. Kreitzer; Steven Finkbeiner; Jeffrey L. Noebels; Lennart Mucke

Neural network dysfunction may play an important role in Alzheimers disease (AD). Neuronal circuits vulnerable to AD are also affected in human amyloid precursor protein (hAPP) transgenic mice. hAPP mice with high levels of amyloid-beta peptides in the brain develop AD-like abnormalities, including cognitive deficits and depletions of calcium-related proteins in the dentate gyrus, a region critically involved in learning and memory. Here, we report that hAPP mice have spontaneous nonconvulsive seizure activity in cortical and hippocampal networks, which is associated with GABAergic sprouting, enhanced synaptic inhibition, and synaptic plasticity deficits in the dentate gyrus. Many Abeta-induced neuronal alterations could be simulated in nontransgenic mice by excitotoxin challenge and prevented in hAPP mice by blocking overexcitation. Aberrant increases in network excitability and compensatory inhibitory mechanisms in the hippocampus may contribute to Abeta-induced neurological deficits in hAPP mice and, possibly, also in humans with AD.


Nature Medicine | 2001

TGF-beta1 promotes microglial amyloid-beta clearance and reduces plaque burden in transgenic mice.

Tony Wyss-Coray; Carol Lin; Fengrong Yan; Gui-Qiu Yu; Michelle Rohde; Lisa McConlogue; Eliezer Masliah; Lennart Mucke

Abnormal accumulation of the amyloid-β peptide (Aβ) in the brain appears crucial to pathogenesis in all forms of Alzheimer disease (AD), but the underlying mechanisms in the sporadic forms of AD remain unknown. Transforming growth factor β1 (TGF-β1), a key regulator of the brains responses to injury and inflammation, has been implicated in Aβ deposition in vivo. Here we demonstrate that a modest increase in astroglial TGF-β1 production in aged transgenic mice expressing the human β-amyloid precursor protein (hAPP) results in a three-fold reduction in the number of parenchymal amyloid plaques, a 50% reduction in the overall Aβ load in the hippocampus and neocortex, and a decrease in the number of dystrophic neurites. In mice expressing hAPP and TGF-β1, Aβ accumulated substantially in cerebral blood vessels, but not in parenchymal plaques. In human cases of AD, Aβ immunoreactivity associated with parenchymal plaques was inversely correlated with Aβ in blood vessels and cortical TGF-β1 mRNA levels. The reduction of parenchymal plaques in hAPP/TGF-β1 mice was associated with a strong activation of microglia and an increase in inflammatory mediators. Recombinant TGF-β1 stimulated Aβ clearance in microglial cell cultures. These results demonstrate that TGF-β1 is an important modifier of amyloid deposition in vivo and indicate that TGF-β1 might promote microglial processes that inhibit the accumulation of Aβ in the brain parenchyma.


The Journal of Neuroscience | 2011

Amyloid-β/Fyn–Induced Synaptic, Network, and Cognitive Impairments Depend on Tau Levels in Multiple Mouse Models of Alzheimer's Disease

Erik D. Roberson; Brian Halabisky; Jong W. Yoo; Jinghua Yao; Jeannie Chin; Fengrong Yan; Tiffany Wu; Patricia Hamto; Nino Devidze; Gui-Qiu Yu; Jorge J. Palop; Jeffrey L. Noebels; Lennart Mucke

Alzheimers disease (AD), the most common neurodegenerative disorder, is a growing public health problem and still lacks effective treatments. Recent evidence suggests that microtubule-associated protein tau may mediate amyloid-β peptide (Aβ) toxicity by modulating the tyrosine kinase Fyn. We showed previously that tau reduction prevents, and Fyn overexpression exacerbates, cognitive deficits in human amyloid precursor protein (hAPP) transgenic mice overexpressing Aβ. However, the mechanisms by which Aβ, tau, and Fyn cooperate in AD-related pathogenesis remain to be fully elucidated. Here we examined the synaptic and network effects of this pathogenic triad. Tau reduction prevented cognitive decline induced by synergistic effects of Aβ and Fyn. Tau reduction also prevented synaptic transmission and plasticity deficits in hAPP mice. Using electroencephalography to examine network effects, we found that tau reduction prevented spontaneous epileptiform activity in multiple lines of hAPP mice. Tau reduction also reduced the severity of spontaneous and chemically induced seizures in mice overexpressing both Aβ and Fyn. To better understand these protective effects, we recorded whole-cell currents in acute hippocampal slices from hAPP mice with and without tau. hAPP mice with tau had increased spontaneous and evoked excitatory currents, reduced inhibitory currents, and NMDA receptor dysfunction. Tau reduction increased inhibitory currents and normalized excitation/inhibition balance and NMDA receptor-mediated currents in hAPP mice. Our results indicate that Aβ, tau, and Fyn jointly impair synaptic and network function and suggest that disrupting the copathogenic relationship between these factors could be of therapeutic benefit.


Nature | 2011

Reversing EphB2 depletion rescues cognitive functions in Alzheimer model

Moustapha Cissé; Brian Halabisky; Julie A. Harris; Nino Devidze; Dena B. Dubal; Binggui Sun; Anna G. Orr; Gregor Lotz; Daniel H. Kim; Patricia Hamto; Kaitlyn Ho; Gui-Qiu Yu; Lennart Mucke

Amyloid-β oligomers may cause cognitive deficits in Alzheimer’s disease by impairing neuronal NMDA-type glutamate receptors, whose function is regulated by the receptor tyrosine kinase EphB2. Here we show that amyloid-β oligomers bind to the fibronectin repeats domain of EphB2 and trigger EphB2 degradation in the proteasome. To determine the pathogenic importance of EphB2 depletions in Alzheimer’s disease and related models, we used lentiviral constructs to reduce or increase neuronal expression of EphB2 in memory centres of the mouse brain. In nontransgenic mice, knockdown of EphB2 mediated by short hairpin RNA reduced NMDA receptor currents and impaired long-term potentiation in the dentate gyrus, which are important for memory formation. Increasing EphB2 expression in the dentate gyrus of human amyloid precursor protein transgenic mice reversed deficits in NMDA receptor-dependent long-term potentiation and memory impairments. Thus, depletion of EphB2 is critical in amyloid-β-induced neuronal dysfunction. Increasing EphB2 levels or function could be beneficial in Alzheimer’s disease.


Neuron | 2006

Antiamyloidogenic and Neuroprotective Functions of Cathepsin B: Implications for Alzheimer's Disease

Sarah Mueller-Steiner; Yungui Zhou; Hideaki Arai; Erik D. Roberson; Binggui Sun; Jennifer Chen; Xin Wang; Gui-Qiu Yu; Luke Esposito; Lennart Mucke; Li Gan

Alzheimers disease (AD) may result from the accumulation of amyloid-beta (Abeta) peptides in the brain. The cysteine protease cathepsin B (CatB) is associated with amyloid plaques in AD brains and has been suspected to increase Abeta production. Here, we demonstrate that CatB actually reduces levels of Abeta peptides, especially the aggregation-prone species Abeta1-42, through proteolytic cleavage. Genetic inactivation of CatB in mice with neuronal expression of familial AD-mutant human amyloid precursor protein (hAPP) increased the relative abundance of Abeta1-42, worsening plaque deposition and other AD-related pathologies. Lentivirus-mediated expression of CatB in aged hAPP mice reduced preexisting amyloid deposits, even thioflavin S-positive plaques. Under cell-free conditions, CatB effectively cleaved Abeta1-42, generating C-terminally truncated Abeta peptides that are less amyloidogenic. Thus, CatB likely fulfills antiamyloidogenic and neuroprotective functions. Insufficient CatB activity might promote AD; increasing CatB activity could counteract the neuropathology of this disease.


The Journal of Neuroscience | 2004

Neuron-Specific Apolipoprotein E4 Proteolysis Is Associated with Increased Tau Phosphorylation in Brains of Transgenic Mice

Walter J. Brecht; Faith M. Harris; Shengjun Chang; Ina Tesseur; Gui-Qiu Yu; Qin Xu; Jo Dee Fish; Tony Wyss-Coray; Manuel Buttini; Lennart Mucke; Robert W. Mahley; Yadong Huang

Apolipoprotein E (apoE) is found in amyloid plaques and neurofibrillary tangles (NFTs) in Alzheimers disease (AD) brains, but its role in their pathogenesis is unclear. Previously, we found C-terminal-truncated fragments of apoE in AD brains and showed that such fragments can cause neurodegeneration and can induce NFT-like inclusions in cultured neuronal cells and in transgenic mice. Here, we analyzed apoE fragmentation in brain tissue homogenates from transgenic mice expressing apoE3 or apoE4 in neurons [neuron-specific enolase (NSE)-apoE] or astrocytes [glial fibrillary acidic protein (GFAP)-apoE] by Western blotting. The C-terminal-truncated fragments of apoE accumulated, in an age-dependent manner, in the brains of NSE-apoE4 and, to a significantly lesser extent, NSE-apoE3 mice; however, no fragments were detected in GFAP-apoE3 or GFAP-apoE4 mice. In NSE-apoE mice, the pattern of apoE fragmentation resembled that seen in AD brains, and the fragmentation was specific for certain brain regions, occurring in the neocortex and hippocampus, which are vulnerable to AD-related neurodegeneration, but not in the less vulnerable cerebellum. Excitotoxic challenge with kainic acid significantly increased apoE fragmentation in NSE-apoE4 but not NSE-apoE3 mice. Phosphorylated tau (p-tau) also accumulated in an age-dependent manner in NSE-apoE4 mice and, to a much lesser extent, in NSE-apoE3 mice but not in GFAP-apoE3 or GFAP-apoE4 mice. Intraneuronal p-tau inclusions in the hippocampus were prominent in 21-month-old NSE-apoE4 mice but barely detectable in NSE-apoE3 mice. Thus, the accumulation of potentially pathogenic C-terminal-truncated fragments of apoE depends on both the isoform and the cellular source of apoE. Neuron-specific proteolytic cleavage of apoE4 is associated with increased phosphorylation of tau and may play a key role in the development of AD-related neuronal deficits.


Nature Neuroscience | 2008

Phospholipase A2 reduction ameliorates cognitive deficits in a mouse model of Alzheimer's disease

Rene O. Sanchez-Mejia; John W. Newman; Sandy Toh; Gui-Qiu Yu; Yungui Zhou; Brian Halabisky; Moustapha Cissé; Kimberly Scearce-Levie; Irene H. Cheng; Li Gan; Jorge J. Palop; Joseph V. Bonventre; Lennart Mucke

Neuronal expression of familial Alzheimers disease–mutant human amyloid precursor protein (hAPP) and hAPP-derived amyloid-β (Aβ) peptides causes synaptic dysfunction, inflammation and abnormal cerebrovascular tone in transgenic mice. Fatty acids may be involved in these processes, but their contribution to Alzheimers disease pathogenesis is uncertain. We used a lipidomics approach to generate a broad profile of fatty acids in brain tissues of hAPP-expressing mice and found an increase in arachidonic acid and its metabolites, suggesting increased activity of the group IV isoform of phospholipase A2 (GIVA-PLA2). The levels of activated GIVA-PLA2 in the hippocampus were increased in individuals with Alzheimers disease and in hAPP mice. Aβ caused a dose-dependent increase in GIVA-PLA2 phosphorylation in neuronal cultures. Inhibition of GIVA-PLA2 diminished Aβ-induced neurotoxicity. Genetic ablation or reduction of GIVA-PLA2 protected hAPP mice against Aβ-dependent deficits in learning and memory, behavioral alterations and premature mortality. Inhibition of GIVA-PLA2 may be beneficial in the treatment and prevention of Alzheimers disease.


Nature | 2000

Alzheimer's disease: Apolipoprotein E and cognitive performance

Jacob Raber; Derek Wong; Gui-Qiu Yu; Manuel Buttini; Robert W. Mahley; Robert E. Pitas; Lennart Mucke

Key proteins implicated in the development of Alzheimers disease are the β-amyloid precursor protein, which gives rise to the β-amyloid peptides that accumulate in the deteriorating brain, and the different isoforms of apolipoprotein E (apoE). The apoE4 variant increases the risk of developing the disease compared with apoE3 (ref. 3). We have tested the spatial memory of transgenic mice carrying human forms of these proteins and find that it is impaired in mice with apoE4 but not those with apoE3, even though the levels of β-amyloid in their brains are comparable. The fact that apoE3, but not apoE4, can protect against cognitive deficits induced by β-amyloid may explain why human apoE4 carriers are at greater risk of developing Alzheimers than apoE3 carriers.


The Journal of Neuroscience | 2004

Fyn Kinase Modulates Synaptotoxicity, But Not Aberrant Sprouting, in Human Amyloid Precursor Protein Transgenic Mice

Jeannie Chin; Jorge J. Palop; Gui-Qiu Yu; Nobuhiko Kojima; Eliezer Masliah; Lennart Mucke

Alzheimers disease (AD), the most common neurodegenerative disorder, results in progressive degeneration of synapses and aberrant sprouting of axon terminals. The mechanisms underlying these seemingly opposing cellular phenomena are unclear. We hypothesized that Fyn kinase may play a role in one or both of these processes because it is increased in AD brains and because it is involved in synaptic plasticity and axonal outgrowth. We investigated the effects of Fyn on AD-related synaptotoxicity and aberrant axonal sprouting by ablating or overexpressing Fyn in human amyloid precursor protein (hAPP) transgenic mice. On the fyn+/+ background, hAPP/amyloid β peptide (Aβ) decreased hippocampal levels of synaptophysin-immunoreactive presynaptic terminals (SIPTs), consistent with previous findings. On the fyn-/- background, hAPP/Aβ did not affect SIPTs. SIPT reductions correlated with hippocampal Aβ levels in hAPP/fyn+/+, but not hAPP/fyn-/-, mice suggesting that Fyn provides a critical link between hAPP/Aβ and SIPTs. Furthermore, overexpression of Fyn exacerbated SIPT reductions in hAPP mice. We also found that the susceptibility of mice to hAPP/Aβ-induced premature mortality was decreased by Fyn ablation and increased by Fyn overexpression. In contrast, axonal sprouting in the hippocampus of hAPP mice was unaffected. We conclude that Fyn-dependent pathways are critical in AD-related synaptotoxicity and that the pathogenesis of hAPP/Aβ-induced neuronal alterations may be mechanistically heterogenous.


The Journal of Neuroscience | 2007

Reelin Depletion in the Entorhinal Cortex of Human Amyloid Precursor Protein Transgenic Mice and Humans with Alzheimer's Disease

Jeannie Chin; Catherine Massaro; Jorge J. Palop; Myo T. Thwin; Gui-Qiu Yu; Nga Bien-Ly; Aaron Bender; Lennart Mucke

Reelin regulates nervous system development and modulates synaptic plasticity in the adult brain. Several findings suggest that alterations in Reelin signaling may contribute to neuronal dysfunction associated with Alzheimers disease (AD). Cell surface receptors for Reelin, including integrins and very-low-density lipoprotein receptor/apolipoprotein E2 receptor, may be targets of amyloid-β (Aβ) peptides presumed to play key roles in the pathogenesis of AD. Reelin also regulates the extent of tau phosphorylation. Finally, increased amounts of Reelin fragments have been found in CSF from AD patients, suggesting altered processing of Reelin. We therefore hypothesized that Reelin levels might be altered in the brains of human amyloid precursor protein (hAPP) transgenic mice, particularly in brain regions vulnerable to AD such as hippocampus and entorhinal cortex. Compared with nontransgenic controls, hAPP mice had significantly fewer Reelin-expressing pyramidal cells in the entorhinal cortex, the major population of glutamatergic neurons expressing Reelin in the brain. Western blot analysis of the hippocampus, which receives projections from the entorhinal cortex, revealed significant reductions in Reelin levels. In contrast, the number of Reelin-expressing GABAergic interneurons was not altered in either the entorhinal cortex or the hippocampus. Thus, neuronal expression of hAPP/Aβ is sufficient to reduce Reelin expression in a specific population of entorhinal cortical pyramidal neurons in vivo. Underscoring the relevance of these findings, we found qualitatively similar reductions of Reelin-expressing pyramidal neurons in the entorhinal cortex of AD brains. We conclude that alterations in Reelin processing or signaling may be involved in AD-related neuronal dysfunction.

Collaboration


Dive into the Gui-Qiu Yu's collaboration.

Top Co-Authors

Avatar

Lennart Mucke

University of California

View shared research outputs
Top Co-Authors

Avatar

Jorge J. Palop

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kaitlyn Ho

University of California

View shared research outputs
Top Co-Authors

Avatar

Jeannie Chin

University of California

View shared research outputs
Top Co-Authors

Avatar

Daniel H. Kim

University of California

View shared research outputs
Top Co-Authors

Avatar

Erik D. Roberson

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Li Gan

University of California

View shared research outputs
Top Co-Authors

Avatar

Myo T. Thwin

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge