Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Guia Carrara is active.

Publication


Featured researches published by Guia Carrara.


PLOS Pathogens | 2011

Norovirus Regulation of the Innate Immune Response and Apoptosis Occurs via the Product of the Alternative Open Reading Frame 4

Nora McFadden; Dalan Bailey; Guia Carrara; Alicia Benson; Yasmin Chaudhry; Amita Shortland; Jonathan L. Heeney; Felix Yarovinsky; Peter Simmonds; Andrew Macdonald; Ian Goodfellow

Small RNA viruses have evolved many mechanisms to increase the capacity of their short genomes. Here we describe the identification and characterization of a novel open reading frame (ORF4) encoded by the murine norovirus (MNV) subgenomic RNA, in an alternative reading frame overlapping the VP1 coding region. ORF4 is translated during virus infection and the resultant protein localizes predominantly to the mitochondria. Using reverse genetics we demonstrated that expression of ORF4 is not required for virus replication in tissue culture but its loss results in a fitness cost since viruses lacking the ability to express ORF4 restore expression upon repeated passage in tissue culture. Functional analysis indicated that the protein produced from ORF4 antagonizes the innate immune response to infection by delaying the upregulation of a number of cellular genes activated by the innate pathway, including IFN-Beta. Apoptosis in the RAW264.7 macrophage cell line was also increased during virus infection in the absence of ORF4 expression. In vivo analysis of the WT and mutant virus lacking the ability to express ORF4 demonstrated an important role for ORF4 expression in infection and virulence. STAT1-/- mice infected with a virus lacking the ability to express ORF4 showed a delay in the onset of clinical signs when compared to mice infected with WT virus. Quantitative PCR and histopathological analysis of samples from these infected mice demonstrated that infection with a virus not expressing ORF4 results in a delayed infection in this system. In light of these findings we propose the name virulence factor 1, VF1 for this protein. The identification of VF1 represents the first characterization of an alternative open reading frame protein for the calicivirus family. The immune regulatory function of the MNV VF1 protein provide important perspectives for future research into norovirus biology and pathogenesis.


Journal of Biological Chemistry | 2012

Six-transmembrane Topology for Golgi Anti-apoptotic Protein (GAAP) and Bax Inhibitor 1 (BI-1) Provides Model for the Transmembrane Bax Inhibitor-containing Motif (TMBIM) Family

Guia Carrara; Nuno Saraiva; Caroline Gubser; Benjamin F. Johnson; Geoffrey L. Smith

Background: Golgi anti-apoptotic protein (GAAP) is a regulator of intracellular Ca2+ fluxes and apoptosis. Results: The transmembrane topology of viral GAAP is conserved in human GAAP and BI-1. Conclusion: GAAPs and BI-1 have a six membrane-spanning topology with cytosolic N and C termini and a C-terminal reentrant loop. Significance: The topology of the TMBIM family provides valuable structural information on these proteins. The Golgi anti-apoptotic protein (GAAP) is a hydrophobic Golgi protein that regulates intracellular calcium fluxes and apoptosis. GAAP is highly conserved throughout eukaryotes and some strains of vaccinia virus (VACV) and camelpox virus. Based on sequence, phylogeny, and hydrophobicity, GAAPs were classified within the transmembrane Bax inhibitor-containing motif (TMBIM) family. TMBIM members are anti-apoptotic and were predicted to have seven-transmembrane domains (TMDs). However, topology prediction programs are inconsistent and predicted that GAAP and other TMBIM members have six or seven TMDs. To address this discrepancy, we mapped the transmembrane topology of viral (vGAAP) and human (hGAAP), as well as Bax inhibitor (BI-1). Data presented show a six-, not seven-, transmembrane topology for vGAAP with a putative reentrant loop at the C terminus and both termini located in the cytosol. We find that this topology is also conserved in hGAAP and BI-1. This places the charged C terminus in the cytosol, and mutation of these charged residues in hGAAP ablated its anti-apoptotic function. Given the highly conserved hydrophobicity profile within the TMBIM family and recent phylogenetic data indicating that a GAAP-like protein may have been the ancestral progenitor of a subset of the TMBIM family, we propose that this vGAAP topology may be used as a model for the remainder of the TMBIM family of proteins. The topology described provides valuable information on the structure and function of an important but poorly understood family of proteins.


Journal of Cell Biology | 2013

hGAAP promotes cell adhesion and migration via the stimulation of store-operated Ca2+ entry and calpain 2.

Nuno Saraiva; David L. Prole; Guia Carrara; Benjamin F. Johnson; Colin W. Taylor; Madeline Parsons; Geoffrey L. Smith

hGAAP promotes cell adhesion and migration by increasing localized Ca2+-dependent activation of calpain, leading to increased focal adhesion dynamics.


Journal of Biological Chemistry | 2013

Human and viral Golgi anti-apoptotic proteins (GAAPs) oligomerize via different mechanisms and monomeric GAAP inhibits apoptosis and modulates calcium

Nuno Saraiva; David L. Prole; Guia Carrara; Carlos Maluquer de Motes; Benjamin F. Johnson; Bernadette Byrne; Colin W. Taylor; Geoffrey L. Smith

Background: GAAPs are Golgi anti-apoptotic proteins that modulate Ca2+ signaling. Results: Unlike human GAAP, viral GAAP oligomerization is cysteine-dependent. Monomeric vGAAP is functional. Conclusion: Viral and human GAAPs show pH-dependent oligomerization via different mechanisms. Monomeric vGAAP is anti-apoptotic and modulates intracellular Ca2+. Significance: This is the first mechanistic analysis of TMBIM protein oligomerization, and shows that monomers are functional. Golgi anti-apoptotic proteins (GAAPs) are hydrophobic proteins resident in membranes of the Golgi complex. They protect cells from a range of apoptotic stimuli, reduce the Ca2+ content of intracellular stores, and regulate Ca2+ fluxes. GAAP was discovered in camelpox virus, but it is highly conserved throughout evolution and encoded by all eukaryote genomes examined. GAAPs are part of the transmembrane Bax inhibitor-containing motif (TMBIM) family that also includes other anti-apoptotic and Ca2+-modulating membrane proteins. Most TMBIM members show multiple bands when analyzed by SDS-PAGE, suggesting that they may be oligomeric. However, the molecular mechanisms of oligomerization, the native state of GAAPs in living cells and the functional significance of oligomerization have not been addressed. TMBIM members are thought to have evolved from an ancestral GAAP. Two different GAAPs, human (h) and viral (v)GAAP were therefore selected as models to examine oligomerization of TMBIM family members. We show that both hGAAP and vGAAP in their native states form oligomers and that oligomerization is pH-dependent. Surprisingly, hGAAP and vGAAP do not share the same oligomerization mechanism. Oligomerization of hGAAP is independent of cysteines, but oligomerization of vGAAP depends on cysteines 9 and 60. A mutant vGAAP that is unable to oligomerize revealed that monomeric vGAAP retains both its anti-apoptotic function and its effect on intracellular Ca2+ stores. In conclusion, GAAP can oligomerize in a pH-regulated manner, and monomeric GAAP is functional.


Journal of Biological Chemistry | 2015

Golgi anti-apoptotic proteins are highly conserved ion channels that affect apoptosis and cell migration.

Guia Carrara; Nuno Saraiva; Maddy Parsons; Bernadette Byrne; David L. Prole; Colin W. Taylor; Geoffrey L. Smith

Background: GAAPs regulate intracellular Ca2+ fluxes, cell migration, and apoptosis. Results: GAAP forms a cation-selective channel, and residues involved in its ion-conducting properties were identified. Conclusion: Mutations within the pore demonstrate that GAAP effects on apoptosis and migration are separable. Significance: Characterization of the pore region of GAAP provides insight into the mechanism of action of this novel and highly conserved ion channel. Golgi anti-apoptotic proteins (GAAPs) are multitransmembrane proteins that are expressed in the Golgi apparatus and are able to homo-oligomerize. They are highly conserved throughout eukaryotes and are present in some prokaryotes and orthopoxviruses. Within eukaryotes, GAAPs regulate the Ca2+ content of intracellular stores, inhibit apoptosis, and promote cell adhesion and migration. Data presented here demonstrate that purified viral GAAPs (vGAAPs) and human Bax inhibitor 1 form ion channels and that vGAAP from camelpox virus is selective for cations. Mutagenesis of vGAAP, including some residues conserved in the recently solved structure of a related bacterial protein, BsYetJ, altered the conductance (E207Q and D219N) and ion selectivity (E207Q) of the channel. Mutation of residue Glu-207 or -178 reduced the effects of GAAP on cell migration and adhesion without affecting protection from apoptosis. In contrast, mutation of Asp-219 abrogated the anti-apoptotic activity of GAAP but not its effects on cell migration and adhesion. These results demonstrate that GAAPs are ion channels and define residues that contribute to the ion-conducting pore and affect apoptosis, cell adhesion, and migration independently.


Immunology Letters | 2017

Vaccinia virus evasion of regulated cell death

David L. Veyer; Guia Carrara; Carlos Maluquer de Motes; Geoffrey L. Smith

Regulated cell death is a powerful anti-viral mechanism capable of aborting the virus replicative cycle and alerting neighbouring cells to the threat of infection. The biological importance of regulated cell death is illustrated by the rich repertoire of host signalling cascades causing cell death and by the multiple strategies exhibited by viruses to block death signal transduction and preserve cell viability. Vaccinia virus (VACV), a poxvirus and the vaccine used to eradicate smallpox, encodes multiple proteins that interfere with apoptotic, necroptotic and pyroptotic signalling. Here the current knowledge on cell death pathways and how VACV proteins interact with them is reviewed. Studying the mechanisms evolved by VACV to counteract host programmed cell death has implications for its successful use as a vector for vaccination and as an oncolytic agent against cancer.


Open Biology | 2017

Golgi anti-apoptotic protein: A tale of camels, calcium, channels and cancer

Guia Carrara; Maddy Parsons; Nuno Saraiva; Geoffrey L. Smith

Golgi anti-apoptotic protein (GAAP), also known as transmembrane Bax inhibitor-1 motif-containing 4 (TMBIM4) or Lifeguard 4 (Lfg4), shares remarkable amino acid conservation with orthologues throughout eukaryotes, prokaryotes and some orthopoxviruses, suggesting a highly conserved function. GAAPs regulate Ca2+ levels and fluxes from the Golgi and endoplasmic reticulum, confer resistance to a broad range of apoptotic stimuli, promote cell adhesion and migration via the activation of store-operated Ca2+ entry, are essential for the viability of human cells, and affect orthopoxvirus virulence. GAAPs are oligomeric, multi-transmembrane proteins that are resident in Golgi membranes and form cation-selective ion channels that may explain the multiple functions of these proteins. Residues contributing to the ion-conducting pore have been defined and provide the first clues about the mechanistic link between these very different functions of GAAP. Although GAAPs are naturally oligomeric, they can also function as monomers, a feature that distinguishes them from other virus-encoded ion channels that must oligomerize for function. This review summarizes the known functions of GAAPs and discusses their potential importance in disease.


Redox biology | 2018

The manganese(III) porphyrin MnTnHex-2-PyP5+ modulates intracellular ROS and breast cancer cell migration: impact in doxorubicin-treated cells

Ana Flórido; Nuno Saraiva; Sara Cerqueira; Nuno Almeida; Maddy Parsons; Ines Batinic-Haberle; Joana P. Miranda; João Costa; Guia Carrara; Matilde Castro; Nuno G. Oliveira; Ana Sofia Fernandes

Manganese(III) porphyrins (MnPs) are superoxide dismutase (SOD) mimics with demonstrated beneficial effects in cancer treatment in combination with chemo- and radiotherapy regimens. Despite the ongoing clinical trials, little is known about the effect of MnPs on metastasis, being therefore essential to understand how MnPs affect this process. In the present work, the impact of the MnP MnTnHex-2-PyP5+ in metastasis-related processes was assessed in breast cancer cells (MCF-7 and MDA-MB-231), alone or in combination with doxorubicin (dox). The co-treatment of cells with non-cytotoxic concentrations of MnP and dox altered intracellular ROS, increasing H2O2. While MnP alone did not modify cell migration, the co-exposure led to a reduction in collective cell migration and chemotaxis. In addition, the MnP reduced the dox-induced increase in random migration of MDA-MB-231 cells. Treatment with either MnP or dox decreased the proteolytic invasion of MDA-MB-231 cells, although the effect was more pronounced upon co-exposure with both compounds. Moreover, to explore the cellular mechanisms underlying the observed effects, cell adhesion, spreading, focal adhesions, and NF-κB activation were also studied. Although differential effects were observed according to the endpoints analysed, overall, the alterations induced by MnP in dox-treated cells were consistent with a therapeutically favorable outcome.


Free Radical Biology and Medicine | 2018

The human Golgi anti-apoptotic protein induces cell invasion by an H 2 O 2 -dependent mechanism

Nuno Almeida; Guia Carrara; Ana Sofia Fernandes; Maddy Parsons; Geoffrey L. Smith; Nuno Saraiva


Archive | 2013

Human and Viral Golgi Anti-apoptotic Proteins (GAAPs) Oligomerize via Different Mechanisms and Monomeric

Nuno Saraiva; David L. Prole; Guia Carrara; Carlos Maluquer de Motes; Benjamin F. Johnson; Bernadette Byrne; Colin W. Taylor; Geoffrey L. Smith

Collaboration


Dive into the Guia Carrara's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge