Guichang Wang
Nankai University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Guichang Wang.
ChemPhysChem | 2013
Xian-Yong Pang; Chang Liu; Dui‐Chun Li; Cun-Qin Lv; Guichang Wang
The reaction mechanism of CO oxidation on the Co(3)O(4) (110) and Co(3)O(4) (111) surfaces is investigated by means of spin-polarized density functional theory (DFT) within the GGA+U framework. Adsorption situation and complete reaction cycles for CO oxidation are clarified. The results indicate that 1) the U value can affect the calculated energetic result significantly, not only the absolute adsorption energy but also the trend in adsorption energy; 2) CO can directly react with surface lattice oxygen atoms (O(2f)/O(3f)) to form CO(2) via the Mars-van Krevelen reaction mechanism on both (110)-B and (111)-B; 3) pre-adsorbed molecular O(2) can enhance CO oxidation through the channel in which it directly reacts with molecular CO to form CO(2) [O(2)(a)+CO(g)→CO(2)(g)+O(a)] on (110)-A/(111)-A; 4) CO oxidation is a structure-sensitive reaction, and the activation energy of CO oxidation follows the order of Co(3)O(4) (111)-A(0.78 eV)>Co(3)O(4) (111)-B (0.68 eV)>Co(3)O(4) (110)-A (0.51 eV)>Co(3)O(4) (110)-B (0.41 eV), that is, the (110) surface shows higher reactivity for CO oxidation than the (111) surface; 5) in addition to the O(2f), it was also found that Co(3+) is more active than Co(2+), so both O(2f) and Co(3+) control the catalytic activity of CO oxidation on Co(3)O(4), as opposed to a previous DFT study which concluded that either Co(3+) or O(2f) is the active site.
Journal of Chemical Physics | 2005
Guichang Wang; Yu-Hua Zhou; Junji Nakamura
Based on the gradient-density functional theory, calculation results of methoxy adsorption on Au(111), Ag(111), Cu(111), Pt(111), Pd(111), Ni(111), Rh(111), and Fe(100) surfaces are presented, and a consistent picture for some key physical properties determining the reactivity of metals appears. These eight metals belong to two groups: either with filled d electrons (group IB) or with unfilled but more than half filled d electrons (group VIII). The calculated adsorption energies are quite in agreement with the experimental data as well as the previous theoretical calculation results. Importantly, using the analysis of B. Hammer and J. K. Norskov, Nature (London) 376, 232 (1995) and in Chemisorption and Reactivity on Supported Clusters and Thin Films, edited by R. M. Lambert and G. Pacchioni (Kluwer Academic, Dordrecht, 1997), pp. 285-351, the binding energies have selectively been linearly correlated to the d-band center and to the size of the metal d-band orbital overlapping with the adsorbate (coupling matrix element) for these two groups of metals. And by analyzing the nature of the adsorption bonding, the possible reason of this difference is suggested.
Journal of Chemical Physics | 2009
Cun-Qin Lv; Kai-Cheng Ling; Guichang Wang
The C-H breaking of methane on the clean and the oxygen precovered palladium single crystal surfaces with the simplest orientations, namely, the dense (111), (100), the more open (110), and the stepped (111) surfaces, the corresponding O/Pd surfaces with different coverage of oxygen, as well as the palladium oxide PdO(100) and PdO(110) surfaces, has been studied with the density functional theory-generalized gradient approximation method using the repeated slab models. The adsorption energies under the most stable configuration of the possible species and the activation energy barriers of the reaction are obtained in the present work. Through systematic calculations for the C-H breaking of methane CH(4)-->CH(3)+H on these surfaces, it is found that such a reaction is structure sensitive on clean palladium and oxygen precovered palladium surfaces with lower oxygen coverage, but it is insensitive on oxygen precovered palladium surfaces with higher oxygen coverage and on palladium oxides. These results are in general agreement with the experimental observations.
Journal of Computational Chemistry | 2005
Guichang Wang; Jun Li; Xiufang Xu; Ruifang Li; Junji Nakamura
A theoretical study of CH3 adsorbed on the (111) surface of some transition and noble metal surfaces M (M = Cu, Ni, Rh, Pt, Pd, Ag, Au) and on the Fe(100) is presented. We find that the hollow site is preferred more than the top one for Fe, Ni, Rh, and Cu, but it is the other way for Pt, Pd, Au, and Ag. In addition, a good linear relationship was observed between the chemisorption energy and d‐band center for Group VIII metals or the square of the coupling matrix element for Group IB metals at the hollow site. Interestingly, with a detailed comparison of the adsorption energies at the top and hollow sites, we find that the adsorption energies among each group are very similar on the top site, which supports the theoretical model of Hammer and Nørskov that the coupling between the HOMO of adsorbate and sp states of the metal is dominant and almost equal, and that the second coupling to the d‐band contributes less but reflects the change of the adsorption energy. It confirms that the coupling to the d band comprises two opposite factors, that is, the d‐band center was attractive and the square of the coupling matrix element was repulsive, such that the contributions from the two factors can counteract each other at the top site.
Journal of Chemical Physics | 2012
Jie Yang; Cun-Qin Lv; Yong Guo; Guichang Wang
The reaction mechanisms for selective acetylene hydrogenation on three different supports, Pd(4) cluster, oxygen defective anatase (101), and rutile (110) titania supported Pd(4), cluster are studied using the density functional theory calculations with a Hubbard U correction (DFT+U). The present calculations show that the defect anatase support binds Pd(4) cluster more strongly than that of rutile titania due to the existence of Ti(3+) in anatase titania. Consequently, the binding energies of adsorbed species such as acetylene and ethylene on Pd(4) cluster become weaker on anatase supported catalysts compared to the rutile supported Pd(4) cluster. Anatase catalyst has higher selectivity of acetylene hydrogenation than rutile catalyst. On the one hand, the activation energies of ethylene formation are similar on the two catalysts, while they vary a lot on ethyl formation. The rutile supported Pd catalyst with lower activation energy is preferable for further hydrogenation. On the other hand, the relatively weak adsorption energy of ethylene is gained on anatase surface, which means it is easier for ethylene desorption, hence getting higher selectivity. For further understanding, the energy decomposition method and micro-kinetic analysis are also introduced.
Journal of Computational Chemistry | 2010
Cui-Yu Niu; Jiao Jiao; Bin Xing; Guichang Wang; Xian-He Bu
The decomposition mechanisms of methanol on five different Pt surfaces, the flat surface of Pt(111), Pt‐defect, Pt‐step, Pt(110)(1 × 1), and Pt(110)(2 × 1), have been studied with the DFT‐GGA method using the repeated slab model. The adsorption energies under the most stable configuration of the possible species and the activation energy barriers of the possible elementary reactions involved are obtained in this work. Through systematic calculations for the reaction mechanism of methanol decomposition on these surfaces, we found that such a reaction shows the same reaction mechanism on these Pt‐based model catalysts, that is, the final products are all H (Hads) and CO (COads) via OH bond breaking in methanol and CH bond scission in methoxy. These results are in general agreement with the previous experimental observations.
Chemical Physics | 2003
Xiufang Xu; Yumei Xing; Zhenfeng Shang; Guichang Wang; Zunsheng Cai; Yinming Pan; Xuezhuang Zhao
Abstract A systematic investigation on all possible substituted fullerene isomers of C 48 B 2 and C 48 N 2 has been performed using the semiempirical methods AM1 and MNDO. The equilibrium geometrical structures, heats of formation, strain, aromaticity, HOMO–LUMO energy gaps, ionization potentials, electronic affinities, the absolute hardness and electronegativity have been studied. The results indicate that the isomer-78, which corresponds to 1,4-substitution in the six-membered ring located on the equator, is the most stable isomer for both C 48 B 2 and C 48 N 2 . The driving force governing the stabilities of the present studied C 48 X 2 (X=B, N) isomers is the strain being inherent in the C 50 cage. The contribution of the conjugation effect to the stabilization is not able to compete with that of the strain. From an application of the HSAB principle, the absolute hardness of the more stable isomers of both C 48 B 2 and C 48 N 2 are larger than that of C 50 , and the direction of electron flow for forming a complex among them may be C 48 N 2 →C 50 →C 48 B 2 according to the calculated absolute electronegativity. The more stable C 48 X 2 isomers have larger ionization potentials and smaller electronic affinities compared with C 50 , which suggests that it is more difficult to oxidize and reduce C 48 X 2 , i.e., the redox characteristics of C 50 can be weakened by doping. The vibrational spectra and electronic absorption spectra of these substituted fullerenes have been calculated, which could serve as a framework to interpret future experimental results. The computed nucleus independent chemical shifts (NICS) values also provide a basis for the possible characterization of these C 48 X 2 isomers.
Chemcatchem | 2012
Zi‐Zhang Wei; Dui‐Chun Li; Xian-Yong Pang; Cun-Qin Lv; Guichang Wang
CO oxidation on the IB group metals [Cu(111), Ag(111), and Au(111)] and corresponding metal oxides [Cu2O(100), Ag2O(100), and Au2O(100)] has been studied by means of density functional theory calculations with the aim to shed light on the reaction mechanism and catalytic activity of metals and metal oxides. The calculated results show that 1) the molecular oxygen mechanism is favored on Ag(111) and Au(111), but the atomic oxygen mechanism is favored on Cu(111); 2) the metal‐terminated metal oxide shows very low activity for CO oxidation; 3) the lattice oxygen can react either with gas phase CO or the absorbed CO molecule on oxygen‐terminated metal oxides; and 4) the reaction barrier for CO oxidation follows the order of M2O(100)–O
Acta Physico-chimica Sinica | 2008
Xuezhuang Zhao; Xiufang Xu; Zhenfeng Shang; Guichang Wang; Ruifang Li
Abstract The fuzzy symmetry characteristics for the internal-rotation of propadine were analyzed using the fuzzy symmetry theory for molecule and molecular orbital (MO). In the process of rotation, three different symmetry point groups D2h, D2d, and D2 were considered. Using the D4h point group, which is the minimal point group including all symmetry elements of D2h, D2d, and D2, we can analyze the fuzzy symmetry for this process. The elements included in D4h point group can be classified to four subsets: (i) G0—it includes all the elements in D2 point group, also belongs to all the above three point groups of D2h, D2d, and D2; (ii) G1—it includes the elements in D2h point group, but not in D2d point group; (iii) G2—it includes the elements in D2d point group, but not in D2h point group; (iv) G3—it includes the elements in D4h point group, but not in D2h or D2d point group. On the basis of the above four subsets, we analyzed the membership functions and the regularity of variation in MOs for the internal-rotation of propadine.
Journal of Molecular Structure-theochem | 2002
Zuoyin Yang; Xiufang Xu; Guichang Wang; Zhenfeng Shang; Zunsheng Cai; Yinming Pan; Xuezhuang Zhao
Abstract A systematic investigation on the molecular behaviors of all the possible isomers of C 34 B 2 and C 34 N 2 formed from the initial C 36 fullerene with C 6 v and C 6 h symmetries have been performed using the semi-empirical AM1 and MNDO methods. The equilibrium geometrical structures, heats of formation, HOMO–LUMO gap energies, heats of atomization, ionization potentials (IP) and affinity potentials (AP), conjugate effect and deformation energies of C 34 X 2 (X=N, B) have been studied. The calculation results show that the heterofullerenes are less stable than C 36 , and the C 34 N 2 should be more stable than the boron analog C 34 B 2 . Both empirical methods in this work indicate that the most stable isomer of C 34 X 2 (X=N, B) corresponds to 1,4-substitution in the cyclohexatriene unit which locating at the equatorial belt of the C 36 cage. Generally speaking, the C 34 X 2 (X=N, B) isomers with the doped atoms near the equatorial belt are more stable that the rest. The heterofullerenes C 34 X 2 have bigger IP and smaller AP compared with C 36 , thus the redox activity of C 36 can be reduced by doping. The results of π-orbital axis vector analysis show that replacements of carbon atoms with either nitrogen or boron can notably release the strains in local part of the cage. Both C 34 N 2 and C 34 B 2 are expected to have significantly different chemical and physical properties from those of the fullerenes.