Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Guideng Li is active.

Publication


Featured researches published by Guideng Li.


Nature Communications | 2012

BCR-signalling synergizes with TLR-signalling for induction of AID and immunoglobulin class-switching through the non-canonical NF-κB pathway

Egest J. Pone; Zhang J; Thach Mai; Clayton A. White; Guideng Li; John K. Sakakura; Pina J. Patel; Ahmed Al-Qahtani; Hong Zan; Zhenming Xu; Paolo Casali

By diversifying antibody biological effector functions, class switch DNA recombination has a central role in the maturation of the antibody response. Here we show that BCR-signalling synergizes with Toll-like receptor (TLR) signalling to induce class switch DNA recombination. BCR-signalling activates the non-canonical NF-κB pathway and enhances the TLR-dependent canonical NF-κB pathway, thereby inducing activation-induced cytidine deaminase (AID), which is critical for class switch DNA recombination. Escherichia coli lipopolysaccharide (LPS) triggers dual TLR4/BCR-signalling and induces hallmarks of BCR-signalling, including CD79a phosphorylation and Ca2+ mobilization, and activates both the NF-κB pathways to induce AID and class switch DNA recombination in a PI(3)K p85α-dependent fashion. CD40-signalling activates the two NF-κB pathways to induce AID and class switch DNA recombination independent of BCR-signalling. Finally, dual BCR/TLR-engaging NP–lipopolysaccharide effectively elicits class-switched NP-specific IgG3 and IgG2b in mice. Thus, by integrating signals of the non-canonical and canonical NF-κB pathways, BCR and TLRs synergize to induce AID and T-cell-independent class switch DNA recombination.


PLOS ONE | 2013

Scaffold Functions of 14-3-3 Adaptors in B Cell Immunoglobulin Class Switch DNA Recombination

Tonika Lam; Lisa Thomas; Clayton A. White; Guideng Li; Egest J. Pone; Zhenming Xu; Paolo Casali

Class switch DNA recombination (CSR) of the immunoglobulin heavy chain (IgH) locus crucially diversifies antibody biological effector functions. CSR involves the induction of activation-induced cytidine deaminase (AID) expression and AID targeting to switch (S) regions by 14-3-3 adaptors. 14-3-3 adaptors specifically bind to 5′-AGCT-3′ repeats, which make up for the core of all IgH locus S regions. They selectively target the upstream and downstream S regions that are set to undergo S–S DNA recombination. We hypothesized that 14-3-3 adaptors function as scaffolds to stabilize CSR enzymatic elements on S regions. Here we demonstrate that all seven 14-3-3β, 14-3-3ε, 14-3-3γ, 14-3-3η, 14-3-3σ, 14-3-3τ and 14-3-3ζ adaptors directly interacted with AID, PKA-Cα (catalytic subunit) and PKA-RIα (regulatory inhibitory subunit) and uracil DNA glycosylase (Ung). 14-3-3 adaptors, however, did not interact with AID C-terminal truncation mutant AIDΔ(180–198) or AIDF193A and AIDL196A point-mutants (which have been shown not to bind to S region DNA and fail to mediate CSR). 14-3-3 adaptors colocalized with AID and replication protein A (RPA) in B cells undergoing CSR. 14-3-3 and AID binding to S region DNA was disrupted by viral protein R (Vpr), an accessory protein of human immunodeficiency virus type-1 (HIV-1), which inhibited CSR without altering AID expression or germline IH-CH transcription. Accordingly, we demonstrated that 14-3-3 directly interact with Vpr, which in turn, also interact with AID, PKA-Cα and Ung. Altogether, our findings suggest that 14-3-3 adaptors play important scaffold functions and nucleate the assembly of multiple CSR factors on S regions. They also show that such assembly can be disrupted by a viral protein, thereby allowing us to hypothesize that small molecule compounds that specifically block 14-3-3 interactions with AID, PKA and/or Ung can be used to inhibit unwanted CSR.


Trends in Immunology | 2013

Epigenetics of the antibody response

Guideng Li; Hong Zan; Zhenming Xu; Paolo Casali

Epigenetic marks, such as DNA methylation, histone post-translational modifications and miRNAs, are induced in B cells by the same stimuli that drive the antibody response. They play major roles in regulating somatic hypermutation (SHM), class switch DNA recombination (CSR), and differentiation to plasma cells or long-lived memory B cells. Histone modifications target the CSR and, possibly, SHM machinery to the immunoglobulin locus; they together with DNA methylation and miRNAs modulate the expression of critical elements of that machinery, such as activation-induced cytidine deaminase (AID), as well as factors central to plasma cell differentiation, such as B lymphocyte-induced maturation protein-1 (Blimp-1). These inducible B cell-intrinsic epigenetic marks instruct the maturation of antibody responses. Their dysregulation plays an important role in aberrant antibody responses to foreign antigens, such as those of microbial pathogens, and self-antigens, such as those targeted in autoimmunity, and B cell neoplasia.


Journal of Immunology | 2014

Histone Deacetylase Inhibitors Upregulate B Cell microRNAs That Silence AID and Blimp-1 Expression for Epigenetic Modulation of Antibody and Autoantibody Responses

Clayton A. White; Egest J. Pone; Tonika Lam; Connie Tat; Ken L. Hayama; Guideng Li; Hong Zan; Paolo Casali

Class-switch DNA recombination (CSR) and somatic hypermutation (SHM), which require activation-induced cytidine deaminase (AID), and plasma cell differentiation, which requires B lymphocyte–induced maturation protein-1 (Blimp-1), are critical for the generation of class-switched and hypermutated (mature) Ab and autoantibody responses. We show that histone deacetylase inhibitors valproic acid and butyrate dampened AICDA/Aicda (AID) and PRDM1/Prdm1 (Blimp-1) mRNAs by upregulating miR-155, miR-181b, and miR-361 to silence AICDA/Aicda, and miR-23b, miR-30a, and miR-125b to silence PRDM1/Prdm1, in human and mouse B cells. This led to downregulation of AID, Blimp-1, and X-box binding protein 1, thereby inhibiting CSR, SHM, and plasma cell differentiation without altering B cell viability or proliferation. The selectivity of histone deacetylase inhibitor–mediated silencing of AICDA/Aicda and PRDM1/Prdm1 was emphasized by unchanged expression of HoxC4 and Irf4 (important inducers/modulators of AICDA/Aicda), Rev1 and Ung (central elements for CSR/SHM), and Bcl6, Bach2, or Pax5 (repressors of PRDM1/Prdm1 expression), as well as unchanged expression of miR-19a/b, miR-20a, and miR-25, which are not known to regulate AICDA/Aicda or PRDM1/Prdm1. Through these B cell–intrinsic epigenetic mechanisms, valproic acid blunted class-switched and hypermutated T-dependent and T-independent Ab responses in C57BL/6 mice. In addition, it decreased class-switched and hypermutated autoantibodies, ameliorated disease, and extended survival in lupus MRL/Faslpr/lpr mice. Our findings outline epigenetic mechanisms that modulate expression of an enzyme (AID) and transcription factors (Blimp-1 and X-box binding protein 1) that are critical to the B cell differentiation processes that underpin Ab and autoantibody responses. They also provide therapeutic proof-of-principle in autoantibody-mediated autoimmunity.


Cell Reports | 2012

Rev1 Recruits Ung to Switch Regions and Enhances dU Glycosylation for Immunoglobulin Class Switch DNA Recombination

Hong Zan; Clayton A. White; Lisa M. Thomas; Thach Mai; Guideng Li; Zhenming Xu; Zhang J; Paolo Casali

By diversifying the biological effector functions of antibodies, class switch DNA recombination (CSR) plays a critical role in the maturation of the immune response. It is initiated by activation-induced cytidine deaminase (AID)-mediated deoxycytosine deamination, yielding deoxyuridine (dU), and dU glycosylation by uracil DNA glycosylase (Ung) in antibody switch (S) region DNA. Here we showed that the translesion DNA synthesis polymerase Rev1 directly interacted with Ung and targeted in an AID-dependent and Ung-independent fashion the S regions undergoing CSR. Rev1(-/-)Ung(+/+) B cells reduced Ung recruitment to S regions, DNA-dU glycosylation, and CSR. Together with an S region spectrum of mutations similar to that of Rev1(+/+)Ung(-/-) B cells, this suggests that Rev1 operates in the same pathway as Ung, as emphasized by further decreased CSR in Rev1(-/-)Msh2(-/-) B cells. Rescue of CSR in Rev1(-/-) B cells by a catalytically inactive Rev1 mutant shows that the important role of Rev1 in CSR is mediated by Rev1s scaffolding function, not its enzymatic function.


Journal of Biological Chemistry | 2012

Iron inhibits activation-induced cytidine deaminase enzymatic activity and modulates immunoglobulin class switch DNA recombination

Guideng Li; Egest J. Pone; Daniel C. Tran; Pina J. Patel; Lisa Dao; Zhenming Xu; Paolo Casali

Background: AID is critical for effective immune responses, as it initiates antibody class switching and somatic hypermutation by deaminating deoxycytidines in the immunoglobulin locus switch region and V(D)J DNA. Results: Fe2+ inhibited AID-mediated deoxycytidine deamination and class switch DNA recombination in B cells. Conclusion: Iron inhibits the enzymatic function of AID. Significance: Iron can modulate antibody responses and may dampen AID-dependent autoimmunity and neoplastic transformation. Immunoglobulin (Ig) class switch DNA recombination (CSR) and somatic hypermutation (SHM) are critical for the maturation of the antibody response. Activation-induced cytidine deaminase (AID) initiates CSR and SHM by deaminating deoxycytidines (dCs) in switch (S) and V(D)J region DNA, respectively, to generate deoxyuracils (dUs). Processing of dUs by uracil DNA glycosylase (UNG) yields abasic sites, which are excised by apurinic/apyrimidinic endonucleases, eventually generating double strand DNA breaks, the obligatory intermediates of CSR. Here, we found that the bivalent iron ion (Fe2+, ferrous) suppressed CSR, leading to decreased number of switched B cells, decreased postrecombination Iμ-CH transcripts, and reduced titers of secreted class-switched IgG1, IgG3, and IgA antibodies, without alterations in critical CSR factors, such as AID, 14-3-3γ, or PTIP, or in general germline IH-S-CH transcription. Fe2+ did not affect B cell proliferation or plasmacytoid differentiation. Rather, it inhibited AID-mediated dC deamination in a dose-dependent fashion. The inhibition of intrinsic AID enzymatic activity by Fe2+ was specific, as shown by lack of inhibition of AID-mediated dC deamination by other bivalent metal ions, such as Zn2+, Mn2+, Mg2+, or Ni2+, and the inability of Fe2+ to inhibit UNG-mediated dU excision. Overall, our findings have outlined a novel role of iron in modulating a B cell differentiation process that is critical to the generation of effective antibody responses to microbial pathogens and tumoral cells. They also suggest a possible role of iron in dampening AID-dependent autoimmunity and neoplastic transformation.


Journal of Immunology | 2013

Induction of Activation-Induced Cytidine Deaminase–Targeting Adaptor 14-3-3γ Is Mediated by NF-κB–Dependent Recruitment of CFP1 to the 5′-CpG-3′–Rich 14-3-3γ Promoter and Is Sustained by E2A

Thach Mai; Egest J. Pone; Guideng Li; Tonika S. Lam; J’aime Moehlman; Zhenming Xu; Paolo Casali

Class switch DNA recombination (CSR) crucially diversifies Ab biologic effector functions. 14-3-3γ specifically binds to the 5′-AGCT-3′ repeats in the IgH locus switch (S) regions. By interacting directly with the C-terminal region of activation-induced cytidine deaminase (AID), 14-3-3γ targets this enzyme to S regions to mediate CSR. In this study, we showed that 14-3-3γ was expressed in germinal center B cells in vivo and induced in B cells by T-dependent and T-independent primary CSR-inducing stimuli in vitro in humans and mice. Induction of 14-3-3γ was rapid, peaking within 3 h of stimulation by LPSs, and sustained over the course of AID and CSR induction. It was dependent on recruitment of NF-κB to the 14-3-3γ gene promoter. The NF-κB recruitment enhanced the occupancy of the CpG island within the 14-3-3γ promoter by CFP1, a component of the COMPASS histone methyltransferase complex, and promoter-specific enrichment of histone 3 lysine 4 trimethylation (H3K4me3), which is indicative of open chromatin state and marks transcription-competent promoters. NF-κB also potentiated the binding of B cell lineage-specific factor E2A to an E-box motif located immediately downstream of the two closely-spaced transcription start sites for sustained 14-3-3γ expression and CSR induction. Thus, 14-3-3γ induction in CSR is enabled by the CFP1-mediated H3K4me3 enrichment in the promoter, dependent on NF-κB and sustained by E2A.


Cell Reports | 2013

Combinatorial H3K9acS10ph Histone Modification in IgH Locus S Regions Targets 14-3-3 Adaptors and AID to Specify Antibody Class-Switch DNA Recombination

Guideng Li; Clayton A. White; Tonika Lam; Egest J. Pone; Daniel C. Tran; Ken L. Hayama; Hong Zan; Zhenming Xu; Paolo Casali


PLOS ONE | 2017

Correction: Scaffold Functions of 14-3-3 Adaptors in B Cell Immunoglobulin Class Switch DNA Recombination

Tonika Lam; Lisa M. Thomas; Clayton A. White; Guideng Li; Egest J. Pone; Zhenming Xu; Paolo Casali


Journal of Immunology | 2015

Histone deacetylase inhibitors dampen antibody and autoantibody responses by upregulating selected B cell microRNAs that silence AID and Blimp-1 expression (IRM10P.603)

Hong Zan; Clayton A. White; Egest J. Pone; Tonika Lam; Connie Tat; Guideng Li; Paolo Casali

Collaboration


Dive into the Guideng Li's collaboration.

Top Co-Authors

Avatar

Paolo Casali

University of Texas Health Science Center at San Antonio

View shared research outputs
Top Co-Authors

Avatar

Zhenming Xu

University of Texas Health Science Center at San Antonio

View shared research outputs
Top Co-Authors

Avatar

Egest J. Pone

University of Texas Health Science Center at San Antonio

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hong Zan

University of California

View shared research outputs
Top Co-Authors

Avatar

Tonika Lam

University of Texas Health Science Center at San Antonio

View shared research outputs
Top Co-Authors

Avatar

Thach Mai

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Connie Tat

University of Texas Health Science Center at San Antonio

View shared research outputs
Top Co-Authors

Avatar

Lisa Thomas

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge