Guido Posern
Max Planck Society
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Guido Posern.
Cell | 2003
Francesc Miralles; Guido Posern; Alexia-Ileana Zaromytidou; Richard Treisman
Rho GTPases regulate the transcription factor SRF via their ability to induce actin polymerization. SRF activity responds to G actin, but the mechanism of this has remained unclear. We show that Rho-actin signaling regulates the subcellular localization of the myocardin-related SRF coactivator MAL, rearranged in t(1;22)(p13;q13) AML. The MAL-SRF interaction displays the predicted properties of a Rho-regulated SRF cofactor. MAL is predominantly cytoplasmic in serum-starved cells, but accumulates in the nucleus following serum stimulation. Activation of the Rho-actin signaling pathway is necessary and sufficient to promote MAL nuclear accumulation. MAL N-terminal sequences, including two RPEL motifs, are required for the response to signaling, while other regions mediate its nuclear export (or cytoplasmic retention) and nuclear import. MAL associates with unpolymerized actin through its RPEL motifs. Constitutively cytoplasmic MAL derivatives interfere with MAL redistribution and Rho-actin signaling to SRF. MAL associates with several SRF target promoters regulated via the Rho-actin pathway.
Journal of Cellular Physiology | 1998
Stephan M. Feller; Guido Posern; Jan Voss; Christian Kardinal; Dima Sakkab; Jie Zheng; Beatrice S. Knudsen
The viral Crk oncogene (v‐Crk) is known to induce sarcomas in chicken and its cellular homologs c‐Crk I, c‐Crk II, and Crk‐like (CRKL) have been implicated in many signal transduction events. These include cell differentiation, cell migration, and the induced nonresponsiveness of T‐cells to stimulation of the T‐cell receptor (TCR), a state known as anergy. CRKL is also the most prominent substrate of the Bcr‐Abl oncoprotein which causes human chronic myelogenous leukemias (CML). The modular composition of the Crk family adapters which largely consist of Src homology (SH2 and SH3) domains has prompted an intensive search for physiological and pathological upstream and downstream signalling partners which selectively bind to these adapters. Upstream proteins include various receptors and large multisite docking proteins, while several protein kinases and guanine nucleotide release proteins (GNRPs) have been suggested to function downstream of c‐Crk and CRKL. Most Crk/CRKL SH2‐ and SH3‐binding proteins contain several docking sites with considerable sequence similarity. Thus the binding requirements of Crk/CRKL SH2 and SH3 domains are now well defined, providing a basis for the design of small inhibitory molecules to block the function of these adapter proteins. The enzymatic cascades activated through Crk family adapters are only partially known, but stress kinases (SAPKs/JNKs) and the GTPase Rap1, as well as the B‐Raf isoform of the Raf protein kinases, are affected in some systems. Several yet unidentified, highly selective Crk interacting proteins detectable in specific cell types remain to be studied. More detailed analyses of the enzymatic activities triggered through Crk‐type adapters will also be crucial to fully define the signalling pathways controlled by this protein family. J Cell Physiol 177:535–552, 1998.
The EMBO Journal | 2004
Guido Posern; Francesc Miralles; Sebastian Guettler; Richard Treisman
Nuclear accumulation of the serum response factor coactivator MAL/MKL1 is controlled by its interaction with G‐actin, which results in its retention in the cytoplasm in cells with low Rho activity. We previously identified actin mutants whose expression promotes MAL nuclear accumulation via an unknown mechanism. Here, we show that actin interacts directly with MAL in vitro with high affinity. We identify a further activating mutation, G15S, which stabilises F‐actin, as do the activating actins S14C and V159N. The three mutants share several biochemical properties, but can be distinguished by their ability to bind cofilin, ATP and MAL. MAL interaction with actin S14C is essentially undetectable, and that with actin V159N is weakened. In contrast, actin G15S interacts more strongly with MAL than the wild‐type protein. Strikingly, the nuclear accumulation of MAL induced by overexpression of actin S14C is substantially dependent on Rho activity and actin treadmilling, while that induced by actin G15S expression is not. We propose a model in which actin G15S acts directly to promote MAL nuclear entry.
Journal of Biological Chemistry | 2000
Marc Schmidt; Matthias Goebeler; Guido Posern; Stephan M. Feller; Cornelia S. Seitz; Eva-B. Bröcker; Ulf R. Rapp; Stephan Ludwig
MAPKs are crucially involved in the regulation of growth and differentiation of a variety of cells. To elucidate the role of MAPKs in keratinocyte differentiation, activation of ERK, JNK, and p38 in response to stimulation with extracellular calcium was analyzed. We provide evidence that calcium-induced differentiation of keratinocytes is associated with rapid and transient activation of the Raf/MEK/ERK pathway. Stimulation of keratinocytes with extracellular calcium resulted in activation of Raf isozymes and their downstream effector ERK within 10–15 min, but did not increase JNK or p38 activity. Calcium-induced ERK activation differed in kinetics from mitogenic ERK activation by epidermal growth factor and could be modulated by alterations of intracellular calcium levels. Interestingly, calcium stimulation led to down-regulation of Ras activity at the same time that ERK activation was initiated. Expression of a dominant-negative mutant of Ras also did not significantly impair calcium-induced ERK activation, indicating that calcium-mediated ERK activation does not require active Ras. Despite the transient nature of ERK activation, calcium-induced expression of the cyclin-dependent kinase inhibitor p21/Cip1 and the differentiation marker involucrin was sensitive to MEK inhibition, which suggests a role for the Raf/MEK/ERK pathway in early stages of keratinocyte differentiation.
Molecular Cell | 2009
Arnaud Descot; Reinhard Hoffmann; Dmitry Shaposhnikov; Markus Reschke; Axel Ullrich; Guido Posern
We analyzed the G-actin-regulated transcriptome by gene expression analysis using previously characterized actin-binding drugs. We found many known MAL/MRTF-dependent target genes of serum response factor (SRF), as well as additional directly regulated genes. Surprisingly, several putative antiproliferative target genes were identified, including mig6/errfi-1, a negative regulator of the EGFR family. Mig6 induction occurred through actin-MAL-SRF signaling, and MAL was inducibly recruited to and activated a mig6 promoter element. Upregulation of Mig6 by lipid agonists such as LPA and S1P or actin drugs involved MAL and correlated with decreased activation of EGFR, MAPK/Erk, and c-fos. Mig6 depletion restored EGFR signaling and provided a proliferative advantage. Overexpression of MAL exhibited strong antiproliferative effects requiring the domains for SRF binding and transactivation, which supports antagonistic functions of MAL on growth-promoting signals. Our results show the existence of negatively acting transcriptional networks between pro- and antiproliferative signaling pathways toward SRF.
Journal of Cell Science | 2008
Stephan Busche; Arnaud Descot; Sylvia Julien; Harald Genth; Guido Posern
Epithelial cell-cell junctions are specialised structures connecting individual cells in epithelial tissues. They are dynamically and functionally linked to the actin cytoskeleton. Disassembly of these junctions is a key event during physiological and pathological processes, but how this influences gene expression is largely uncharacterised. Here, we investigate whether junction disassembly regulates transcription by serum response factor (SRF) and its coactivator MAL/MRTF. Ca2+-dependent dissociation of epithelial integrity was found to correlate strictly with SRF-mediated transcription. In cells lacking E-cadherin expression, no SRF activation was observed. Direct evidence is provided that signalling occurs via monomeric actin and MAL. Dissociation of epithelial junctions is accompanied by induction of RhoA and Rac1. However, using clostridial cytotoxins, we demonstrate that Rac, but not RhoA, is required for SRF and target gene induction in epithelial cells, in contrast to serum-stimulated fibroblasts. Actomyosin contractility is a prerequisite for signalling but failed to induce SRF activation, excluding a sufficient role of the Rho-ROCK-actomyosin pathway. We conclude that E-cadherin-dependent cell-cell junctions facilitate transcriptional activation via Rac, G-actin, MAL and SRF upon epithelial disintegration.
Oncogene | 1998
Guido Posern; Jie Zheng; Beatrice S. Knudsen; Christian Kardinal; Kerstin B. Müller; Jan Voss; Tomoyuki Shishido; David Cowburn; Genhong Cheng; Baolin Wang; Gary D. Kruh; Sarah K. Burrell; Christina A. Jacobson; Douglas M. Lenz; Thomas J. Zamborelli; Knut Adermann; Hidesaburo Hanafusa; Stephan M. Feller
Many Src Homology 3 (SH3) domains function as molecular adhesives in intracellular signal transduction. Based on previous ultrastructural studies, short motifs which bind to the first SH3 domains of the adapters Crk and CRKL were selectively mutagenised to generate Crk/CRKL SH3-binding peptides of very high affinity and selectivity. Affinities were increased up to 20-fold compared to the best wildtype sequences, while the selectivity against a similar SH3 domain [Grb2SH3(N)] was not only retained, but sometimes increased. Blot techniques with GST-fusion peptides and in solution precipitation assays with biotinylated high affinity Crk binding peptides (HACBPs) were subsequently used to analyse the binding of these sequences to a large panel of SH3 domain-containing fusion proteins. Only those proteins which contained the CrkSH3(1) or CRKLSH3(1) domains bound efficiently to the HACBPs. A GST-HACBP fusion protein precipitated Crk and CRKL proteins out of 35S-labelled and unlabelled cell lysates. Very little binding of other cellular proteins to HACBP was detectable, indicative of a great preference for Crk and CRKL when compared to the wide variety of other endogenous cellular proteins. Moreover, HACBP disrupted in vitro preexisting Crk-complexes with DOCK180 and the exchange factors SoS and C3G, which are known targets of Crk adapters, in a concentration dependent manner. HACBP-based molecules should therefore be useful as highly selective inhibitors of intracellular signalling processes involving Crk and CRKL.
Journal of Biological Chemistry | 1998
Guido Posern; Christoph K. Weber; Ulf R. Rapp; Stephan M. Feller
Rap1 and Ras are homologous GTPases that are implicated in cell proliferation and differentiation. At present, little is known about the regulation of Rap1 activity. Using a recently developed assay with activation-specific probes, we found increased activity of endogenous Rap1 in NIH3T3 cells after stimulation with the neuropeptide growth factor bombesin in a concentration- and time-dependent manner. The activity of endogenous Ras was unaffected. Analysis of putative effectors showed no activation of c-Raf-1 or B-Raf after bombesin stimulation. However, MAPK/Erk-phosphorylation and the proliferation rate was increased. In addition, Rap1 was activated during cell adhesion to coated and uncoated tissue culture plates, as well as in response to various mitogens. Surprisingly, the basal Rap1 activity was observed to be cell density-dependent, with low levels when cells were reaching confluency. The results suggest that Rap1 acts as an important mediator of mitogenic signals distinct to Ras activation.
Oncogene | 2000
Jan Voss; Guido Posern; Jürgen R. Hannemann; Leanne M. Wiedemann; Ali G Turhan; Hélène Poirel; Olivier Bernard; Knut Adermann; Christian Kardinal; Stephan M. Feller
Inappropriate activation of Abl family kinases plays a crucial role in different human leukaemias. In addition to the well known oncoproteins p190Bcr-Abl and p210Bcr-Abl, Tel-Abl, a novel fusion protein resulting from a different chromosomal translocation, has recently been described. In this study, the kinase specificities of the Bcr-Abl and Tel-Abl proteins were compared to the physiological Abl family kinases c-Abl and Arg (abl related gene). Using short peptides which correspond to the target epitopes in known substrate proteins of Abl family kinases, we found a higher catalytic promiscuity of Bcr-Abl and Tel-Abl. Similar to Bcr-Abl, Tel-Abl was found in complexes with the adapter protein CRKL. In addition, c-Crk II and CRKL are tyrosine phosphorylated and complexed with numerous other tyrosine phosphorylated proteins in Tel-Abl expressing Ba/F3 cells. GTPase analysis with a RasGTP-specific precipitation assay showed constitutive elevation of GTP-loaded Ras in cells expressing the leukaemic Abl proteins. The mitogenic MAPK/Erk kinases as well as Akt/PKB, a kinase implicated to negatively regulate apoptosis, were also constitutively activated by both Bcr-Abl and Tel-Abl. The results indicate that the leukaemic Abl-fusion proteins have catalytic specificities different from the normal kinases c-Abl and Arg and that Tel-Abl is capable to activate at least some pathways which are also upregulated by Bcr-Abl.
The Journal of Neuroscience | 2009
Sina Stern; Evaine Debre; Christine Stritt; Jürgen Berger; Guido Posern; Bernd Knöll
Neuronal motility relies on actin treadmilling. In addition to regulating cytoskeletal dynamics in the cytoplasm, actin modulates nuclear gene expression. We present a hitherto unappreciated cross talk of actin signaling with gene expression governing neuronal motility. Toward this end, we used a novel approach using mutant actins either favoring (G15S) or inhibiting (R62D) F-actin assembly. Overexpressing these mutant actins in mouse hippocampal neurons not only modulated growth-cone function but also neurite elongation, which was ambiguous by traditional pharmacological interference. G15S actin enhanced neurite outgrowth and filopodia number. In contrast, R62D reduced neurite length and impaired growth-cone filopodia formation. Growth-cone collapse induced by ephrin-As, a family of repulsive axon guidance molecules, is impaired upon R62D expression, resulting in perseverance of ring-shaped F-actin filaments. R62D-induced phenotypes strongly resemble neurons lacking SRF (Serum Response Factor). SRF controls gene transcription of various actin isoforms (e.g., Actb, Acta1) and actin-binding proteins (e.g., Gsn) and is the archetypical transcription factor to study actin interplay with transcription. We show that neuronal motility evoked by these actin mutants requires SRF activity. Further, constitutively active SRF partially rescues R62D-induced phenotypes. Conversely, actin signaling regulates neuronal SRF-mediated gene expression. Notably, a nucleus-resident actin (R62DNLS) also regulates SRFs transcriptional activity. Moreover, R62DNLS decreases neuronal motility similar to the cytoplasmic R62D actin mutant although R62DNLS has no access to cytoplasmic actin dynamics. Thus, herein we provide first evidence that neuronal motility not only depends on cytoplasmic actin dynamics but also on the availability of actin to modulate nuclear functions such as gene transcription.