Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Guido Tarone is active.

Publication


Featured researches published by Guido Tarone.


The EMBO Journal | 1999

Role of alphavbeta3 integrin in the activation of vascular endothelial growth factor receptor-2.

Raffaella Soldi; Stefania Mitola; Marina Strasly; Paola Defilippi; Guido Tarone; Federico Bussolino

Interaction between integrin αvβ3 and extracellular matrix is crucial for endothelial cells sprouting from capillaries and for angiogenesis. Furthermore, integrin‐mediated outside‐in signals co‐operate with growth factor receptors to promote cell proliferation and motility. To determine a potential regulation of angiogenic inducer receptors by the integrin system, we investigated the interaction between αvβ3 integrin and tyrosine kinase vascular endothelial growth factor receptor‐2 (VEGFR‐2) in human endothelial cells. We report that tyrosine‐phosphorylated VEGFR‐2 co‐immunoprecipitated with β3 integrin subunit, but not with β1 or β5, from cells stimulated with VEGF‐A165. VEGFR‐2 phosphorylation and mitogenicity induced by VEGF‐A165 were enhanced in cells plated on the αvβ3 ligand, vitronectin, compared with cells plated on the α5β1 ligand, fibronectin or the α2β1 ligand, collagen. BV4 anti‐β3 integrin mAb, which does not interfere with endothelial cell adhesion to vitronectin, reduced (i) the tyrosine phosphorylation of VEGFR‐2; (ii) the activation of downstream transductor phosphoinositide 3‐OH kinase; and (iii) biological effects triggered by VEGF‐A165. These results indicate a new role for αvβ3 integrin in the activation of an in vitro angiogenic program in endothelial cells. Besides being the most important survival system for nascent vessels by regulating cell adhesion to matrix, αvβ3 integrin participates in the full activation of VEGFR‐2 triggered by VEGF‐A, which is an important angiogenic inducer in tumors, inflammation and tissue regeneration.


The EMBO Journal | 1998

Integrins induce activation of EGF receptor: role in MAP kinase induction and adhesion-dependent cell survival

Laura Moro; Mascia Venturino; Chiarella Bozzo; Lorenzo Silengo; Fiorella Altruda; Laura Beguinot; Guido Tarone; Paola Defilippi

Adhesion of human primary skin fibroblasts and ECV304 endothelial cells to immobilized matrix proteins, β1 or αv integrin antibodies stimulates tyrosine phosphorylation of the epidermal growth factor (EGF) receptor. This tyrosine phosphorylation is transiently induced, reaching maximal levels 30 min after adhesion, and it occurs in the absence of receptor ligands. Similar results were observed with EGF receptor‐transfected NIH‐3T3 cells. Use of a kinase‐negative EGF receptor mutant demonstrates that the integrin‐stimulated tyrosine phosphorylation is due to activation of the receptors intrinsic kinase activity. Integrin‐mediated EGF receptor activation leads to Erk‐1/MAP kinase induction, as shown by treatment with the specific inhibitor tyrphostin AG1478 and by expression of a dominant‐negative EGF receptor mutant. EGF receptor and Erk‐1/MAP kinase activation by integrins does not lead per se to cell proliferation, but is important for entry into S phase in response to EGF or serum. EGF receptor activation is also required for extracellular matrix‐mediated cell survival. Adhesion‐dependent MAP kinase activation and survival are regulated through EGF receptor activation in cells expressing this molecule above a threshold level (5×103 receptors per cell). These results demonstrate that integrin‐dependent EGF receptor activation is a novel signaling mechanism involved in cell survival and proliferation in response to extracellular matrix.


Experimental Cell Research | 1985

Rous sarcoma virus-transformed fibroblasts adhere primarily at discrete protrusions of the ventral membrane called podosomes

Guido Tarone; Daniela Cirillo; Filippo G. Giancotti; Paolo M. Comoglio; Pier Carlo Marchisio

Rous sarcoma virus-transformed BHK cells (RSV/B4-BHK) adhere to a fibronectin-coated substratum primarily at specific dot-shaped sites. Such sites contain actin and vinculin and represent close contacts with the substratum as revealed by interference reflection microscopy. Only a few adhesion plaques and actin filament bundles can be detected in these cells as compared to untransformed parental fibroblasts. In thin sections examined with transmission electron microscopy (TEM) these adhesion sites correspond to short protrusions of the ventral cell surface that contact the substratum at their apical portion. These structures, which may represent cellular feet, are therefore called podosomes. By screening a number of different transformed fibroblasts plated on a fibronectin-coated substratum we find that podosomes are common to mammalian and avian cell lines transformed either by Rous sarcoma virus (RSV) or by Fujinami avian sarcoma virus (FSV), whose oncogenes encode specific tyrosine kinases. Using antibodies reacting with phosphotyrosine in immunofluorescence experiments, we show that phosphotyrosine-containing molecules are concentrated in podosomes. Podosomes are not detected in fibroblasts transformed by other retroviruses (Snyder-Theilen sarcoma virus, Abelson leukemia virus and Kirsten sarcoma virus) or by DNA tumor viruses (polyoma, SV40), indicating that podosome-mediated adhesion in transformed fibroblasts is related to the peculiar properties of some oncoproteins and possibly to their tropism for adhesion systems. Podosomes and adhesion plaques, although similar in cytoskeletal protein composition, have different mechanisms and kinetics of formation. Assembly of podosomes, in fact (i) does not require fetal calf serum (FCS) in the adhesion medium, that is necessary for the organization of adhesion plaques; (ii) does not require protein synthesis; and (iii) is insensitive to the ionophore monensin, that prevents adhesion plaque formation. Moreover, during attachment to fibronectin-coated dishes, podosomes appear in the initial phase (60 min) of attachment, while adhesion plaques require a minimum of 180 min. In conclusion podosomes of RSV- and FSV-transformed fibroblasts represent a phenotypic variant of adhesion structures.


Nature Medicine | 2003

Melusin, a muscle-specific integrin β1-interacting protein, is required to prevent cardiac failure in response to chronic pressure overload

Mara Brancaccio; Luigi Fratta; Antonella Notte; Emilio Hirsch; Roberta Poulet; Simona Guazzone; Marika De Acetis; Carmine Vecchione; Gennaro Marino; Fiorella Altruda; Lorenzo Silengo; Guido Tarone; Giuseppe Lembo

Cardiac hypertrophy is an adaptive response to a variety of mechanical and hormonal stimuli, and represents an early event in the clinical course leading to heart failure. By gene inactivation, we demonstrate here a crucial role of melusin, a muscle-specific protein that interacts with the integrin β1 cytoplasmic domain, in the hypertrophic response to mechanical overload. Melusin-null mice showed normal cardiac structure and function in physiological conditions, but when subjected to pressure overload—a condition that induces a hypertrophic response in wild-type controls—they developed an abnormal cardiac remodeling that evolved into dilated cardiomyopathy and contractile dysfunction. In contrast, the hypertrophic response was identical in wild-type and melusin-null mice after chronic administration of angiotensin II or phenylephrine at doses that do not increase blood pressure—that is, in the absence of cardiac biomechanical stress. Analysis of intracellular signaling events induced by pressure overload indicated that phosphorylation of glycogen synthase kinase-3β (GSK-3β) was specifically blunted in melusin-null hearts. Thus, melusin prevents cardiac dilation during chronic pressure overload by specifically sensing mechanical stress.


Current Opinion in Cell Biology | 2012

Extracellular matrix, integrins, and growth factors as tailors of the stem cell niche.

Maria Felice Brizzi; Guido Tarone; Paola Defilippi

It is widely acknowledged that integrins, the major receptors for the extracellular matrix (ECM) proteins, exert an extensive crosstalk with many growth factor and cytokine receptors. Among them, growth factor receptors, such as the EGFR, MET, PDGFR and VEGFR, and the IL-3 receptor have been shown to be physically and functionally associated to integrins. The connection between integrins and other transmembrane receptors is bidirectional, integrins being essential for receptor signalling, and receptors being involved in regulation of integrin expression or activation. Moreover, there is accumulating evidence for direct binding of specific growth factors and morphogens to the ECM proteins, suggesting that ECM might spatially integrate different types of signals in a specific microenvironment, facilitating integrin/transmembrane receptors connection. These interactions are crucial in controlling a variety of cell behaviours including proliferation, survival and differentiation. The increasing interest for cell therapy in regenerative medicine has recently emphasized the role of cell-ECM adhesion as stem cell determinant. The relevance of ECM, integrins and growth factor receptor network in the establishment of stem cell niche, in maintenance of stem cells and in their differentiation will be analyzed in the present review.


Experimental Cell Research | 1987

Rous sarcoma virus-transformed fibroblasts and cells of monocytic origin display a peculiar dot-like organization of cytoskeletal proteins involved in microfilament-membrane interactions☆

Pier Carlo Marchisio; Daniela Cirillo; Anna Teti; Alberta Zambonin-Zallone; Guido Tarone

By immunofluorescence and interference reflection microscopy (IRM) we found that F-actin and a group of cytoskeletal proteins involved in microfilament-membrane interaction, including vinculin, alpha-actinin, fimbrin and talin, are specifically organized in discrete dot-like structures corresponding to cell-substratum contact sites in both monocytes and monocyte-derived cells such as macrophages and osteoclasts. These proteins have a precise topological distribution; vinculin and talin form a doughnut-like ring, while actin, fimbrin and alpha-actinin are organized in dots matching the rings. An identical dot-like organization of F-actin and associated cytoskeletal proteins was also detected in malignant fibroblasts transformed by Rous Sarcoma virus (RSV) but not in the corresponding untransformed cells in culture. It is concluded that RSV transformation induces fibroblasts to express a cytoskeletal organization and a pattern of adhesion that are normally found in cells of monocytic origin. We propose that the occurrence of this cytoskeletal organization in RSV-transformed fibroblasts and in monocyte-derived cells may reflect a common ability to migrate across anatomical boundaries.


Journal of Biological Chemistry | 2000

Distinct Roles of the Adaptor Protein Shc and Focal Adhesion Kinase in Integrin Signaling to ERK

Laura Barberis; Kishore K. Wary; Giusy Fiucci; Feng Liu; Emilio Hirsch; Mara Brancaccio; Fiorella Altruda; Guido Tarone; Filippo G. Giancotti

It has been proposed that integrins activate ERK through the adaptor protein Shc independently of focal adhesion kinase (FAK) or through FAK acting on multiple target effectors, including Shc. We show that disruption of the actin cytoskeleton by cytochalasin D causes a complete inhibition of FAK but does not inhibit Shc signaling and activation of ERK. We have then generated primary fibroblasts carrying a targeted deletion of the segment of β1 subunit cytoplasmic domain required for activation of FAK. Analysis of these cells indicates that FAK is not necessary for efficient tyrosine phosphorylation of Shc, association of Shc with Grb2, and activation of ERK in response to matrix adhesion. In addition, integrin-mediated activation of FAK does not appear to be required for signaling to ERK following growth factor stimulation. To examine if FAK could contribute to the activation of ERK in a cell type-specific manner through the Rap1/B-Raf pathway, we have used Swiss-3T3 cells, which in contrast to primary fibroblasts express B-Raf. Dominant negative studies indicate that Shc mediates the early phase and peak, whereas FAK, p130CAS, Crk, and Rap1 contribute to the late phase of integrin-dependent activation of ERK in these cells. In addition, introduction of B-Raf enhances and sustains integrin-mediated activation of ERK in wild-type primary fibroblasts but not in those carrying the targeted deletion of the β1 cytoplasmic domain. Thus, the Shc and FAK pathways are activated independently and function in a parallel fashion. Although not necessary for signaling to ERK in primary fibroblasts, FAK may enhance and prolong integrin-mediated activation of ERK through p130CAS, Crk, and Rap1 in cells expressing B-Raf.


Microscopy Research and Technique | 1999

Actin cytoskeleton organization in response to integrin-mediated adhesion

Paola Defilippi; Cristina Olivo; Mascia Venturino; Laura Dolce; Lorenzo Silengo; Guido Tarone

Cell matrix adhesion regulates actin cytoskeleton organization through distinct steps, from formation of filopodia and lamellipodia in the early phases of cell adhesion to organization of focal adhesions and stress fibers in fully adherent cells. In this review, we follow the events induced by integrin‐mediated adhesion, such as activation of GTPases Cdc42 and Rac and their effectors and their role in actin polymerization leading to formation of lamellipodia and filopodia and cell spreading. We also show that actin stress fiber and focal adhesion formation following adhesion requires cooperation between integrin‐mediated signaling and additional stimuli, including activation of PKC, Rho GTPases, and PTKs such as p125Fak and Src. Microsc. Res. Tech. 47:67–78, 1999.


Journal of Experimental Medicine | 2005

Protection from angiotensin II–mediated vasculotoxic and hypertensive response in mice lacking PI3Kγ

Carmine Vecchione; Enrico Patrucco; Gennaro Marino; Laura Barberis; Roberta Poulet; Alessandra Aretini; Angelo Maffei; Maria Teresa Gentile; Marianna Storto; Ornella Azzolino; Mara Brancaccio; GianLuca Colussi; Umberto Bettarini; Fiorella Altruda; Lorenzo Silengo; Guido Tarone; Mathias P. Wymann; Emilio Hirsch; Giuseppe Lembo

Hypertension affects nearly 20% of the population in Western countries and strongly increases the risk for cardiovascular diseases. In the pathogenesis of hypertension, the vasoactive peptide of the renin-angiotensin system, angiotensin II and its G protein–coupled receptors (GPCRs), play a crucial role by eliciting reactive oxygen species (ROS) and mediating vessel contractility. Here we show that mice lacking the GPCR-activated phosphoinositide 3-kinase (PI3K)γ are protected from hypertension that is induced by administration of angiotensin II in vivo. PI3Kγ was found to play a role in angiotensin II–evoked smooth muscle contraction in two crucial, distinct signaling pathways. In response to angiotensin II, PI3Kγ was required for the activation of Rac and the subsequent triggering of ROS production. Conversely, PI3Kγ was necessary to activate protein kinase B/Akt, which, in turn, enhanced L-type Ca2+ channel–mediated extracellular Ca2+ entry. These data indicate that PI3Kγ is a key transducer of the intracellular signals that are evoked by angiotensin II and suggest that blocking PI3Kγ function might be exploited to improve therapeutic intervention on hypertension.


Journal of Biological Chemistry | 1999

Melusin is a new muscle-specific interactor for beta(1) integrin cytoplasmic domain.

Mara Brancaccio; Simona Guazzone; Nadia Menini; Elena Sibona; Emilio Hirsch; Marco De Andrea; Mariano Rocchi; Fiorella Altruda; Guido Tarone; Lorenzo Silengo

Here we describe the isolation and partial characterization of a new muscle-specific protein (Melusin) which interacts with the integrin cytoplasmic domain. The cDNA encoding Melusin was isolated in a two-hybrid screening of a rat neonatal heart library using β1A and β1D integrin cytoplasmic regions as baits. Melusin is a cysteine-rich cytoplasmic protein of 38 kDa, with a stretch of acidic amino acid residues at the extreme carboxyl-terminal end. In addition, putative binding sites for SH3 and SH2 domains are present in the amino-terminal half of the molecule. Chromosomic analysis showed that melusin gene maps at Xq12.1/13 in man and in the synthenic region X band D in mouse. Melusin is expressed in skeletal and cardiac muscles but not in smooth muscles or other tissues. Immunofluorescence analysis showed that Melusin is present in a costamere-like pattern consisting of two rows flanking α-actinin at Z line. Its expression is up-regulated duringin vitro differentiation of the C2C12 murine myogenic cell line, and it is regulated during in vivo skeletal muscle development. A fragment corresponding to the tail region of Melusin interacted strongly and specifically with β1 integrin cytoplasmic domain in a two-hybrid test, but the full-length protein did not. Because the tail region of Melusin contains an acidic amino acid stretch resembling high capacity and low affinity calcium binding domains, we tested the possibility that Ca2+ regulates Melusin-integrin association. In vitro binding experiments demonstrated that interaction of full-length Melusin with detergent-solubilized integrin heterodimers occurred only in absence of cations, suggesting that it can be regulated by intracellular signals affecting Ca2+ concentration.

Collaboration


Dive into the Guido Tarone's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge