Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Guido Vogel.
Applied and Environmental Microbiology | 2008
Yves Thomas; Guido Vogel; Werner Wunderli; Patricia Suter; Mark Witschi; Daniel Koch; Caroline Tapparel; Laurent Kaiser
ABSTRACT Successful control of a viral disease requires knowledge of the different vectors that could promote its transmission among hosts. We assessed the survival of human influenza viruses on banknotes given that billions of these notes are exchanged daily worldwide. Banknotes were experimentally contaminated with representative influenza virus subtypes at various concentrations, and survival was tested after different time periods. Influenza A viruses tested by cell culture survived up to 3 days when they were inoculated at high concentrations. The same inoculum in the presence of respiratory mucus showed a striking increase in survival time (up to 17 days). Similarly, B/Hong Kong/335/2001 virus was still infectious after 1 day when it was mixed with respiratory mucus. When nasopharyngeal secretions of naturally infected children were used, influenza virus survived for at least 48 h in one-third of the cases. The unexpected stability of influenza virus in this nonbiological environment suggests that unusual environmental contamination should be considered in the setting of pandemic preparedness.
BMC Veterinary Research | 2011
Helen Huber; Dominik Ziegler; Valentin Pflüger; Guido Vogel; Claudio Zweifel; Roger Stephan
BackgroundMethicillin-resistant coagulase-negative staphylococci (MR-CNS) are of increasing importance to animal and public health. In veterinary medicine and along the meat and milk production line, only limited data were so far available on MR-CNS characteristics. The aim of the present study was to evaluate the prevalence of MR-CNS, to identify the detected staphylococci to species level, and to assess the antibiotic resistance profiles of isolated MR-CNS strains.ResultsAfter two-step enrichment and growth on chromogenic agar, MR-CNS were detected in 48.2% of samples from livestock and chicken carcasses, 46.4% of samples from bulk tank milk and minced meat, and 49.3% of human samples. Using matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS), 414 selected MR-CNS strains belonged to seven different species (S. sciuri, 32.6%; S. fleurettii, 25.1%; S. haemolyticus, 17.4%; S. epidermidis, 14.5%, S. lentus, 9.2%; S. warneri, 0.7%; S. cohnii, 0.5%). S. sciuri and S. fleurettii thereby predominated in livestock, BTM and minced meat samples, whereas S. epidermidis and S. haemolyticus predominated in human samples. In addition to beta-lactam resistance, 33-49% of all 414 strains were resistant to certain non-beta-lactam antibiotics (ciproflaxacin, clindamycin, erythromycin, tetracycline).ConclusionsA high prevalence of MR-CNS was found in livestock production. This is of concern in view of potential spread of mecA to S. aureus (MRSA). Multiresistant CNS strains might become an emerging problem for veterinary medicine. For species identification of MR-CNS isolated from different origins, MALDI-TOF MS proved to be a fast and reliable tool and is suitable for screening of large sample amounts.
Applied and Environmental Microbiology | 2010
Fabio Rezzonico; Guido Vogel; Brion Duffy; Mauro Tonolla
ABSTRACT Pantoea agglomerans is an ecologically diverse taxon that includes commercially important plant-beneficial strains and opportunistic clinical isolates. Standard biochemical identification methods in diagnostic laboratories were repeatedly shown to run into false-positive identifications of P. agglomerans, a fact which is also reflected by the high number of 16S rRNA gene sequences in public databases that are incorrectly assigned to this species. More reliable methods for rapid identification are required to ascertain the prevalence of this species in clinical samples and to evaluate the biosafety of beneficial isolates. Whole-cell matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) methods and reference spectra (SuperSpectrum) were developed for accurate identification of P. agglomerans and related bacteria and used to detect differences in the protein profile within variants of the same strain, including a ribosomal point mutation conferring streptomycin resistance. MALDI-TOF MS-based clustering was shown to generally agree with classification based on gyrB sequencing, allowing rapid and reliable identification at the species level.
Mycological Progress | 2010
Sophie De Respinis; Guido Vogel; Cinzia Benagli; Mauro Tonolla; Orlando Petrini; Gary J. Samuels
This investigation aimed to assess whether MALDI-TOF MS analysis of the proteome could be applied to the study of Trichoderma, a fungal genus selected because it includes many species and is phylogenetically well defined. We also investigated whether MALDI-TOF MS analysis of peptide mass fingerprints would reveal apomorphies that could be useful in diagnosing species in this genus. One hundred and twenty nine morphologically and genetically well-characterized strains of Hypocrea and Trichoderma, belonging to 25 species in 8 phylogenetic clades, were analyzed by MALDI-TOF MS mass spectrometry. The resulting peak lists of individual samples were submitted to single-linkage cluster analysis to produce a taxonomic tree and were compared to ITS and tef1 sequences from GenBank. SuperSpectra™ for the 13 most relevant species of Trichoderma were computed. The results confirmed roughly previously defined clades and sections. With the exceptions of T. saturnisporum (Longibrachiatum Clade) and T. harzianum (Harzianum Clade), strains of individual species clustered very closely. T. polysporum clustered distantly from all other groups. The MALDI-TOF MS analysis accurately reflected the phylogenetic classification reported in recent publications, and, in most cases, strains identified by DNA sequence analysis clustered together by MALDI-TOF MS. The resolution of MALDI-TOF MS, as performed here, was roughly equivalent to ITS rDNA. The MALDI-TOF MS technique analyzes peptides and represents a rough equivalent to sequencing, making this method a useful adjunct for determination of species limits. It also allows simple, reliable, and quick species identification, thus representing a valid alternative to gene sequencing for species diagnosis of Trichoderma and other fungal taxa.
Journal of Clinical Microbiology | 2010
Roger Stephan; Dominik Ziegler; Valentin Pflüger; Guido Vogel; Angelika Lehner
ABSTRACT Cronobacter spp. are Gram-negative opportunistic food-borne pathogens and are known as rare but important causes of life-threatening neonatal infections. Rapid and reliable identification of Cronobacter species and their differentiation from phenotypically similar, nonpathogenic Enterobacter turicensis, Enterobacter helveticus, and Enterobacter pulveris have become increasingly important. We evaluated here the application of matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) for rapid genus and species identification of the six Cronobacter species recognized so far. To this end, we developed a reference MS database library that includes 54 Cronobacter target strains as well as 17 nontarget strains. The strains provided reproducible and unique mass spectra profiles covering a wide molecular mass range (2,000 to 30,000 Da). Genus- and species-specific biomarker protein mass patterns were determined. The defined biomarker mass patterns (Spectral Archive and Microbial Identification System [SARAMIS] SuperSpectrum) were validated using 36 strains from various Cronobacter species as well as eight nontarget strains. For all strains the mass spectrometry-based identification scheme yielded identical results as with a PCR-based identification system. All strains were correctly identified, and no nontarget strain was misidentified as Cronobacter. Our study demonstrates that MALDI-TOF MS is a reliable and powerful tool for the rapid identification of Cronobacter strains to the genus and species level.
PLOS ONE | 2012
Dominik Ziegler; Anna Mariotti; Valentin Pflüger; Maged M. Saad; Guido Vogel; Mauro Tonolla; Xavier Perret
Rhizobia form a disparate collection of soil bacteria capable of reducing atmospheric nitrogen in symbiosis with legumes. The study of rhizobial populations in nature involves the collection of large numbers of nodules found on roots or stems of legumes, and the subsequent typing of nodule bacteria. To avoid the time-consuming steps of isolating and cultivating nodule bacteria prior to genotyping, a protocol of strain identification based on the comparison of MALDI-TOF MS spectra was established. In this procedure, plant nodules were considered as natural bioreactors that amplify clonal populations of nitrogen-fixing bacteroids. Following a simple isolation procedure, bacteroids were fingerprinted by analysing biomarker cellular proteins of 3 to 13 kDa using Matrix Assisted Laser Desorption/Ionization Time of Flight (MALDI-TOF) mass spectrometry. In total, bacteroids of more than 1,200 nodules collected from roots of three legumes of the Phaseoleae tribe (cowpea, soybean or siratro) were examined. Plants were inoculated with pure cultures of a slow-growing Bradyrhizobium japonicum strain G49, or either of two closely related and fast-growing Sinorhizobium fredii strains NGR234 and USDA257, or with mixed inoculants. In the fully automatic mode, correct identification of bacteroids was obtained for >97% of the nodules, and reached 100% with a minimal manual input in processing of spectra. These results showed that MALDI-TOF MS is a powerful tool for the identification of intracellular bacteria taken directly from plant tissues.
Systematic and Applied Microbiology | 2011
Dittmar Hahn; Babur S. Mirza; Cinzia Benagli; Guido Vogel; Mauro Tonolla
Matrix-assisted laser desorption ionization-time-of-flight (MALDI-TOF) mass spectrometry (MS) was evaluated as a technique to characterize strains of the nitrogen-fixing actinomycete Frankia. MALDI-TOF MS reliably distinguished 37 isolates within the genus Frankia and assigned them to their respective host infection groups, i.e., the Alnus/Casuarina and the Elaeagnus host infection groups. The assignment of individual strains to sub-groups within the respective host infection groups was consistent with classification based on comparative sequence analysis of nifH gene fragments, confirming the usefulness of MALDI-TOF MS as a rapid and reliable tool for the characterization of Frankia strains.
Applied Microbiology and Biotechnology | 2015
Dominik Ziegler; Joël F. Pothier; Julie Ardley; Romain K. Fossou; Valentin Pflüger; Sofie E. De Meyer; Guido Vogel; Mauro Tonolla; John Howieson; Wayne Reeve; Xavier Perret
Accurate identification of soil bacteria that form nitrogen-fixing associations with legume crops is challenging given the phylogenetic diversity of root nodule bacteria (RNB). The labor-intensive and time-consuming 16S ribosomal RNA (rRNA) sequencing and/or multilocus sequence analysis (MLSA) of conserved genes so far remain the favored molecular tools to characterize symbiotic bacteria. With the development of mass spectrometry (MS) as an alternative method to rapidly identify bacterial isolates, we recently showed that matrix-assisted laser desorption ionization (MALDI) time-of-flight (TOF) can accurately characterize RNB found inside plant nodules or grown in cultures. Here, we report on the development of a MALDI-TOF RNB-specific spectral database built on whole cell MS fingerprints of 116 strains representing the major rhizobial genera. In addition to this RNB-specific module, which was successfully tested on unknown field isolates, a subset of 13 ribosomal proteins extracted from genome data was found to be sufficient for the reliable identification of nodule isolates to rhizobial species as shown in the putatively ascribed ribosomal protein masses (PARPM) database. These results reveal that data gathered from genome sequences can be used to expand spectral libraries to aid the accurate identification of bacterial species by MALDI-TOF MS.
BMC Biotechnology | 2015
Damien Portevin; Valentin Pflüger; Patricia Otieno; René Brunisholz; Guido Vogel; Claudia Daubenberger
BackgroundConventionally, human monocyte sub-populations are classified according to surface marker expression into classical (CD14++CD16−), intermediate (CD14++CD16+) and non-classical (CD14+CD16++) lineages. The involvement of non-classical monocytes, also referred to as proinflammatory monocytes, in the pathophysiology of diseases including diabetes mellitus, atherosclerosis or Alzheimer’s disease is well recognized. The development of novel high-throughput methods to capture functional states within the different monocyte lineages at the whole cell proteomic level will enable real time monitoring of disease states.ResultsWe isolated and characterized (pan-) monocytes, mostly composed of classical CD16− monocytes, versus autologous CD16+ subpopulations from the blood of healthy human donors (n = 8) and compared their inflammatory properties in response to lipopolysaccharides and M.tuberculosis antigens by multiplex cytokine profiling. Following resting and in vitro antigenic stimulation, cells were recovered and subjected to whole-cell mass spectrometry analysis. This approach identified the specific presence/absence of m/z peaks and therefore potential biomarkers that can discriminate pan-monocytes from their CD16 counterparts. Furthermore, we found that semi-quantitative data analysis could capture the subtle proteome changes occurring upon microbial stimulation that differentiate resting, from lipopolysaccharides or M. tuberculosis stimulated monocytic samples.ConclusionsWhole-cell mass spectrometry fingerprinting could efficiently distinguish monocytic sub-populations that arose from a same hematopoietic lineage. We also demonstrate for the first time that mass spectrometry signatures can monitor semi-quantitatively specific activation status in response to exogenous stimulation. As such, this approach stands as a fast and efficient method for the applied immunology field to assess the reactivity of potentially any immune cell types that may sustain health or promote related inflammatory diseases.
BMC Proceedings | 2011
Guido Vogel; André Strauss; Bernard Jenni; Dominik Ziegler; Eric Dumermuth; Sylvie Antz; Claudia Bardouille; Beat Wipf; Christian Miscenic; Georg Schmid; Valentin Pflüger
Misidentification or cross-contamination of cell lines used in biotechnology or diagnostic settings are a challenge for laboratories and cell culture repositories. Masters et al. [1] among others reported the occurrence of large numbers of unrecognized and unreported misidentification or cross-contamination of cell lines. Current methods for the authentication of cell lines such as karyotyping, 2D-gel-electrophoresis, restriction fragment length polymorphism (RFLP) or short tandem repeats (STR) are expensive, labor intensive and not routinely applied. In the last decade MALDI-TOF MS became a powerful tool for the rapid and cost effective identification and taxonomic classification of microorganisms directly from whole cell extracts. We adapted this protein fingerprinting approach for a fast species identification of eukaryotic cell lines and established as well as validated a reference database. In addition we demonstrate that this new approach has a potential for the rapid characterization of recombinant protein expression systems. Accurate protein expression and the determination of the molecular mass of the recombinant expressed proteins (20-120kDa) can directly be analyzed from stable transfected and virus infected cultures.