Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Guido Wollmann is active.

Publication


Featured researches published by Guido Wollmann.


Cancer Journal | 2012

Oncolytic virus therapy for glioblastoma multiforme: concepts and candidates.

Guido Wollmann; Koray Özduman; van den Pol An

AbstractTwenty years of oncolytic virus development have created a field that is driven by the potential promise of lasting impact on our cancer treatment repertoire. With the field constantly expanding—more than 20 viruses have been recognized as potential oncolytic viruses—new virus candidates continue to emerge even as established viruses reach clinical trials. They all share the defining commonalities of selective replication in tumors, subsequent tumor cell lysis, and dispersion within the tumor. Members from diverse virus classes with distinctly different biologies and host species have been identified. Of these viruses, 15 have been tested on human glioblastoma multiforme. So far, 20 clinical trials have been conducted or initiated using attenuated strains of 7 different oncolytic viruses against glioblastoma multiforme. In this review, we present an overview of viruses that have been developed or considered for glioblastoma multiforme treatment. We outline the principles of tumor targeting and selective viral replication, which include mechanisms of tumor-selective binding, and molecular elements usurping cellular biosynthetic machinery in transformed cells. Results from clinical trials have clearly established the proof of concept and have confirmed the general safety of oncolytic virus application in the brain. The moderate clinical efficacy has not yet matched the promising preclinical lab results; next-generation oncolytic viruses that are either “armed” with therapeutic genes or embedded in a multimodality treatment regimen should enhance the clinical results.


Journal of Virology | 2005

Targeting Human Glioblastoma Cells: Comparison of Nine Viruses with Oncolytic Potential

Guido Wollmann; Peter Tattersall; Anthony N. van den Pol

ABSTRACT Brain tumors classified as glioblastomas have proven refractory to treatment and generally result in death within a year of diagnosis. We used seven in vitro tests and one in vivo trial to compare the efficacy of nine different viruses for targeting human glioblastoma. Green fluorescent protein (GFP)-expressing vesicular stomatitis (VSV), Sindbis virus, pseudorabies virus (PRV), adeno-associated virus (AAV), and minute virus of mice i-strain (MVMi) and MVMp all infected glioblastoma cells. Mouse and human cytomegalovirus, and simian virus 40 showed only low levels of infection or GFP expression. VSV and Sindbis virus showed strong cytolytic actions and high rates of replication and spread, leading to an elimination of glioblastoma. PRV and both MVM strains generated more modest lytic effects and replication capacity. VSV showed a similar oncolytic profile on U-87 MG and M059J glioblastoma. In contrast, Sindbis virus showed strong preference for U-87 MG, whereas MVMi and MVMp preferred M059J. Sindbis virus and both MVM strains showed highly tumor-selective actions in glioblastoma plus fibroblast coculture. VSV and Sindbis virus were serially passaged on glioblastoma cells; we isolated a variant, VSV-rp30, that had increased selectivity and lytic capacity in glioblastoma cells. VSV and Sindbis virus were very effective at replicating, spreading within, and selectively killing human glioblastoma in an in vivo mouse model, whereas PRV and AAV remained at the injection site with minimal spread. Together, these data suggest that four (VSV, Sindbis virus, MVMi, and MVMp) of the nine viruses studied merit further analysis for potential therapeutic actions on glioblastoma.


The Journal of Neuroscience | 2008

Systemic Vesicular Stomatitis Virus Selectively Destroys Multifocal Glioma and Metastatic Carcinoma in Brain

Koray Özduman; Guido Wollmann; Joseph M. Piepmeier; Anthony N. van den Pol

Metastatic tumors and malignant gliomas make up the majority of cancers in the brain. They are invariably fatal and there is currently no cure. From in vitro comparisons of a number of viruses, we selected one that appeared the best in selectively killing glioblastoma cells. This replication-competent virus, the glioma-adapted vesicular stomatis virus strain VSVrp30a, was used for in vivo tests with the underlying view that infection of tumor cells will lead to an increase in the number of viruses subsequently released to kill additional tumor cells. Intravenous injection of VSVrp30a expressing a green fluorescent protein reporter, rapidly targeted and destroyed multiple types of human and mouse tumors implanted in the mouse brain, including glioblastoma and mammary tumors. When tumors were implanted both in the brain and peripherally, emulating systemic cancer metastasis, tumors inside and outside the brain were simultaneously infected. Intranasal inoculation, leading to olfactory nerve transport of the virus into the brain, selectively infected and killed olfactory bulb tumors. Neither control cortical wounds nor transplanted normal mouse or human cells were targeted, indicating viral tumor selectivity. Control viruses, including pseudorabies, adeno-associated, or replication-deficient VSV, did not infect the brain tumor. Confocal laser time-lapse imaging through a cranial window showed that intravenous VSV infects the tumor at multiple sites and kills migrating tumor cells. Disrupted tumor vasculature, suggested by dye leakage, may be the port of entry for intravenously delivered VSV. Quantitative PCR analysis of how VSVrp30a selectively infected tumor cells suggested multiple mechanisms, including cell surface binding and internalization.


Journal of Virology | 2010

Some Attenuated Variants of Vesicular Stomatitis Virus Show Enhanced Oncolytic Activity against Human Glioblastoma Cells relative to Normal Brain Cells

Guido Wollmann; Vitaliy Rogulin; Ian Simon; John K. Rose; Anthony N. van den Pol

ABSTRACT Vesicular stomatitis virus (VSV) has been shown in laboratory studies to be effective against a variety of tumors, including malignant brain tumors. However, attenuation of VSV may be necessary to balance the potential toxicity toward normal cells, particularly when targeting brain tumors. Here we compared 10 recombinant VSV variants resulting from different attenuation strategies. Attenuations included gene shifting (VSV-p1-GFP/RFP), M protein mutation (VSV-M51), G protein cytoplasmic tail truncations (VSV-CT1/CT9), G protein deletions (VSV-dG-GFP/RFP), and combinations thereof (VSV-CT9-M51). Using in vitro viability and replication assays, the VSV variants were grouped into three categories, based on their antitumor activity and non-tumor-cell attenuation. In the first group, wild-type-based VSV-G/GFP, tumor-adapted VSV-rp30, and VSV-CT9 showed a strong antitumor profile but also retained some toxicity toward noncancer control cells. The second group, VSV-CT1, VSV-dG-GFP, and VSV-dG-RFP, had significantly diminished toxicity toward normal cells but showed little oncolytic action. The third group displayed a desired combination of diminished general toxicity and effective antitumor action; this group included VSV-M51, VSV-CT9-M51, VSV-p1-GFP, and VSV-p1-RFP. A member of the last group, VSV-p1-GFP, was then compared in vivo against wild-type-based VSV-G/GFP. Intranasal inoculation of young, postnatal day 16 mice with VSV-p1-GFP showed no adverse neurological effects, whereas VSV-G/GFP was associated with high lethality (80%). Using an intracranial tumor xenograft model, we further demonstrated that attenuated VSV-p1-GFP targets and kills human U87 glioblastoma cells after systemic application. We concluded that some, but not all, attenuated VSV mutants display a favorable oncolytic profile and merit further investigation.


Journal of Virology | 2007

Variable deficiencies in the interferon response enhance susceptibility to vesicular stomatitis virus oncolytic actions in glioblastoma cells but not in normal human glial cells.

Guido Wollmann; Michael D. Robek; Anthony N. van den Pol

ABSTRACT With little improvement in the poor prognosis for humans with high-grade glioma brain tumors, alternative therapeutic strategies are needed. As such, selective replication-competent oncolytic viruses may be useful as a potential treatment modality. Here we test the hypothesis that defects in the interferon (IFN) pathway could be exploited to enhance the selective oncolytic profile of vesicular stomatitis virus (VSV) in glioblastoma cells. Two green fluorescent protein-expressing VSV strains, recombinant VSV and the glioma-adapted recombinant VSV-rp30a, were used to study infection of a variety of human glioblastoma cell lines compared to a panel of control cells, including normal human astrocytes, oligodendrocyte precursor cells, and primary explant cultures from human brain tissue. Infection rate, cell viability, viral replication, and IFN-α/β-related gene expression were compared in the absence and presence of IFN-α or polyriboinosinic polyribocytidylic acid [poly(I:C)], a synthetic inducer of the IFN-α/β pathway. Both VSV strains caused rapid and total infection and death of all tumor cell lines tested. To a lesser degree, normal cells were also subject to VSV infection. In contrast, IFN-α or poly(I:C) completely attenuated the infection of all primary control brain cells, whereas most glioblastoma cell lines treated with IFN-α or poly(I:C) showed little or no sign of protection and were killed by VSV. Together, our results demonstrate that activation of the interferon pathway protects normal human brain cells from VSV infection while maintaining the vulnerability of human glioblastoma cells to viral destruction.


The Journal of Comparative Neurology | 2009

Viral strategies for studying the brain, including a replication-restricted self-amplifying delta-G vesicular stomatis virus that rapidly expresses transgenes in brain and can generate a multicolor Golgi-like expression.

Anthony N. van den Pol; Koray Özduman; Guido Wollmann; Winson S.C. Ho; Ian Simon; Yang Yao; John K. Rose; Prabhat K. Ghosh

Viruses have substantial value as vehicles for transporting transgenes into neurons. Each virus has its own set of attributes for addressing neuroscience‐related questions. Here we review some of the advantages and limitations of herpes, pseudorabies, rabies, adeno‐associated, lentivirus, and others to study the brain. We then explore a novel recombinant vesicular stomatitis virus (dG‐VSV) with the G‐gene deleted and transgenes engineered into the first position of the RNA genome, which replicates only in the first brain cell infected, as corroborated with ultrastructural analysis, eliminating spread of virus. Because of its ability to replicate rapidly and to express multiple mRNA copies and additional templates for more copies, reporter gene expression is amplified substantially, over 500‐fold in 6 hours, allowing detailed imaging of dendrites, dendritic spines, axons, and axon terminal fields within a few hours to a few days after inoculation. Green fluorescent protein (GFP) expression is first detected within 1 hour of inoculation. The virus generates a Golgi‐like appearance in all neurons or glia of regions of the brain tested. Whole‐cell patch‐clamp electrophysiology, calcium digital imaging with fura‐2, and time‐lapse digital imaging showed that neurons appeared physiologically normal after expressing viral transgenes. The virus has a wide range of species applicability, including mouse, rat, hamster, human, and Drosophila cells. By using dG‐VSV, we show efferent projections from the suprachiasmatic nucleus terminating in the periventricular region immediately dorsal to the nucleus. DG‐VSVs with genes coding for different color reporters allow multicolor visualization of neurons wherever applied. J. Comp. Neurol. 516:456–481, 2009.


Journal of Virology | 2007

Cytomegalovirus induces interferon-stimulated gene expression and is attenuated by interferon in the developing brain

Anthony N. van den Pol; Michael D. Robek; Prabhat K. Ghosh; Koray Özduman; Prasanthi Bandi; Matthew D. Whim; Guido Wollmann

ABSTRACT Cytomegalovirus (CMV) is considered the most common infectious agent causing permanent neurological dysfunction in the developing brain. We have previously shown that CMV infects developing brain cells more easily than it infects mature brain cells and that this preference is independent of the host B- and T-cell responses. In the present study, we examined the innate antiviral defenses against mouse (m) and human (h) CMVs in developing and mature brain and brain cells. mCMV infection induced interferon (IFN)-stimulated gene expression by 10- to 100-fold in both glia- and neuron-enriched cultures. Treatment of primary brain cultures with IFN-α, -β, and -γ or a synthetic RNA, poly(I:C), reduced the number of mCMV-infected cells, both in older cells and in fresh cultures from embryonic mouse brains. When a viral dose that killed almost all unprotected cells was used, IFN-protected cells had a natural appearance, and when they were tested with whole-cell patch clamp recording, they appeared physiologically normal with typical resting membrane potentials and action potentials. mCMV infection increased expression of representative IFN-stimulated genes (IFIT3, OAS, LMP2, TGTP, and USP18) in both neonatal and adult brains to similarly large degrees. The robust upregulation of gene expression in the neonatal brain was associated with a much higher degree of viral replication at this stage of development. In contrast to the case for downstream gene induction, CMV upregulated IFN-α/β expression to a greater degree in the adult brain than in the neonatal brain. Similar to the case with cultured brain cells, IFN treatment of the developing brain in vivo depressed mCMV replication. In parallel work with cultured primary human brain cells, IFN and poly(I:C) treatment reduced hCMV infection and prevented virus-mediated cell death. These results suggest that coupling IFN administration with current treatments may reduce CMV infections in the developing brain.


Vision Research | 2006

Voltage-dependent ion channels in the mouse RPE: comparison with Norrie disease mice.

Guido Wollmann; Steffen Lenzner; Wolfgang Berger; Rita Rosenthal; Mike O. Karl; Olaf Strauss

We studied electrophysiological properties of cultured retinal pigment epithelial (RPE) cells from mouse and a mouse model for Norrie disease. Wild-type RPE cells revealed the expression of ion channels known from other species: delayed-rectifier K(+) channels composed of Kv1.3 subunits, inward rectifier K(+) channels, Ca(V)1.3 L-type Ca(2+) channels and outwardly rectifying Cl(-) channels. Expression pattern and the ion channel characteristics current density, blocker sensitivity, kinetics and voltage-dependence were compared in cells from wild-type and Norrie mice. Although no significant differences were observed, our study provides a base for future studies on ion channel function and dysfunction in transgenic mouse models.


Journal of Virology | 2013

Vesicular Stomatitis Virus Variants Selectively Infect and Kill Human Melanomas but Not Normal Melanocytes

Guido Wollmann; John N. Davis; Marcus Bosenberg; Anthony N. van den Pol

ABSTRACT Metastatic malignant melanoma remains one of the most therapeutically challenging forms of cancer. Here we test replication-competent vesicular stomatitis viruses (VSV) on 19 primary human melanoma samples and compare these infections with those of normal human melanocyte control cells. Even at a low viral concentration, we found a strong susceptibility to viral oncolysis in over 70% of melanomas. In contrast, melanocytes displayed strong resistance to virus infection and showed complete protection by interferon. Several recombinant VSVs were compared, and all infected and killed most melanomas with differences in the time course with increasing rates of melanoma infection, as follows: VSV-CT9-M51 < VSV-M51 < VSV-G/GFP < VSV-rp30. VSV-rp30 sequencing revealed 2 nonsynonymous mutations at codon positions P126 and L223, both of which appear to be required for the enhanced phenotype. VSV-rp30 showed effective targeting and infection of multiple subcutaneous and intracranial melanoma xenografts in SCID mice after tail vein virus application. Sequence analysis of mutations in the melanomas used revealed that BRAF but not NRAS gene mutation status was predictive for enhanced susceptibility to infection. In mouse melanoma models with specific induced gene mutations including mutations of the Braf, Pten, and Cdkn2a genes, viral infection correlated with the extent of malignant transformation. Similar to human melanocytes, mouse melanocytes resisted VSV-rp30 infection. This study confirms the general susceptibility of the majority of human melanoma types for VSV-mediated oncolysis.


Journal of Virology | 2009

Peripheral Immunization Blocks Lethal Actions of Vesicular Stomatitis Virus within the Brain

Koray Özduman; Guido Wollmann; Sebastian A. Ahmadi; Anthony N. van den Pol

ABSTRACT Vesicular stomatitis virus (VSV) is the prototype virus for 75 or more negative-strand RNA viruses in the rhabdovirus family. Some of these viruses, including VSV, can cause neurological impairment or death upon brain infection. VSV has shown promise in the prevention and treatment of disease as a vaccine vector and an oncolytic virus, but infection of the brain remains a concern. Three VSV variants, the wild-type-related VSV-G/GFP and two attenuated viruses, VSV-CT1 and VSV-CT9-M51, were compared for neuroinvasiveness and neuromorbidity. In nonimmunized mice, direct VSV-G/GFP injection into the brain invariably resulted in lethal encephalitis; in contrast, partial survival was seen after direct injection of the attenuated VSV strains. In addition, both attenuated VSV strains showed significantly reduced neuroinvasiveness after intranasal inoculation of young postnatal day 16 mice. Of the three tested variants, VSV-CT9-M51 generated the lowest degree of neuropathology. Despite its attenuated state, peripheral inoculations of VSV-CT9-M51 targeted and killed human glioblastoma implanted into the mouse brain. Importantly, we show here that intranasal or intramuscular immunization prevents the lethal effects of subsequent VSV-G/GFP, VSV-CT1, and VSV-CT9-M51 injections into the brain. These results indicate that attenuated recombinant viruses show reduced neurovirulence and that peripheral immunization blocks the lethal actions of all VSVs tested.

Collaboration


Dive into the Guido Wollmann's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carles Urbiola

Innsbruck Medical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Janine Kimpel

Innsbruck Medical University

View shared research outputs
Top Co-Authors

Avatar

Dorothee von Laer

Innsbruck Medical University

View shared research outputs
Top Co-Authors

Avatar

Catherine Dold

Innsbruck Medical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Iris Koske

Innsbruck Medical University

View shared research outputs
Top Co-Authors

Avatar

Zoltán Bánki

Innsbruck Medical University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge