Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Guihua Tai is active.

Publication


Featured researches published by Guihua Tai.


Journal of Medicinal Food | 2010

Antitumor Activities and Immunomodulatory Effects of Ginseng Neutral Polysaccharides in Combination with 5-Fluorouracil

Weihua Ni; Xu Zhang; Bo Wang; Yan Chen; Han Han; Yuying Fan; Yifa Zhou; Guihua Tai

A neutral polysaccharide fraction (WGPN) prepared from Panax ginseng C.A. Meyer by hot water extraction and DEAE-cellulose chromatography was tested for its anticancer activity alone and in combination with 5-fluorouracil (5-FU) in Sarcoma-180 (S180) tumor-bearing mice by intragastric administration. WGPN alone inhibited S180 tumor growth in a bell-shaped dose-response curve, and the combination with 5-FU showed a synergistic effect. Studies of various immunological activities in S180-bearing mice revealed that WGPN stimulated the proliferation of lymphocytes, increased natural killer cell cytotoxicity, enhanced the phagocytosis and nitric oxide production by macrophages, and increased the level of tumor necrosis factor-alpha in serum. In combination with 5-FU, WGPN mitigated damage to the immune system caused by 5-FU in S180-bearing mice. These results suggest that WGPN might be a potential adjuvant for chemotherapeutic drugs.


Medical Oncology | 2011

Comparative studies of the antiproliferative effects of ginseng polysaccharides on HT-29 human colon cancer cells

Hairong Cheng; Shanshan Li; Yuying Fan; Xiaoge Gao; Miao Hao; Jia Wang; Xiaoyan Zhang; Guihua Tai; Yifa Zhou

Ginseng polysaccharide has anticancer activity. However, the structure–activity relationship and the activity mechanism are still unclear. Therefore, it is necessary to study the anticancer activity of structurally different ginseng polysaccharide fractions and their potential mechanisms. Ginseng polysaccharide fractions and their temperature-modified products were assayed for their effects on HT-29 cell proliferation by MTT assay, on cell cycle progression by flow cytometry, and on caspase-3 activation by western blot analysis. The HG-rich ginseng pectin inhibited cell proliferation and induced cell cycle arrest in the G2/M phase. The temperature-modified HG-rich pectin had dramatically increased antiproliferative effect and induced apoptosis accompanied by the activation of caspase-3. Starch-like glucan and arabinogalactan of ginseng exhibited no antiproliferative effects. Even after temperature modification, their inhibitory effects either remained unchanged or increased slightly. The HG-rich pectin exerts its antiproliferative effect via cell cycle arrest and the temperature modification markedly increased the antiproliferative effect.


Journal of Biological Chemistry | 2013

The inhibitory effects of a rhamnogalacturonan I (RG-I) domain from ginseng pectin on galectin-3 and its structure-activity relationship.

Xiaoge Gao; Yuan Zhi; Lin Sun; Xiaoxia Peng; Tao Zhang; Huiting Xue; Guihua Tai; Yifa Zhou

Background: Structural elements in pectin that inhibit galectin-3, a β-galactoside-binding protein associated with cancer progression, are poorly defined. Results: Both backbone and side chains of pectin RG-I-4 were important for its anti-galectin-3 activity. Conclusion: High activity of RG-I-4 was due to cooperation between short β1,4-galactan side chains. Significance: The results are valuable for producing highly active pectin-based galectin-3 inhibitors. Pectin has been shown to inhibit the actions of galectin-3, a β-galactoside-binding protein associated with cancer progression. The structural features of pectin involved in this activity remain unclear. We investigated the effects of different ginseng pectins on galectin-3 action. The rhamnogalacturonan I-rich pectin fragment, RG-I-4, potently inhibited galectin-3-mediated hemagglutination, cancer cell adhesion and homotypic aggregation, and binding of galectin-3 to T-cells. RG-I-4 specifically bound to the carbohydrate recognition domain of galectin-3 with a dissociation constant of 22.2 nm, which was determined by surface plasmon resonance analysis. The structure-activity relationship of RG-I-4 was investigated by modifying the structure through various enzymatic and chemical methods followed by activity tests. The results showed that (a) galactan side chains were essential to the activity of RG-I-4, whereas arabinan side chains positively or negatively regulated the activity depending on their location within the RG-I-4 molecule. (b) The activity of galactan chain was proportional to its length up to 4 Gal residues and largely unchanged thereafter. (c) The majority of galactan side chains in RG-I-4 were short with low activities. (d) The high activity of RG-I-4 resulted from the cooperative action of these side chains. (e) The backbone of the molecule was very important to RG-I-4 activity, possibly by maintaining a structural conformation of the whole molecule. (f) The isolated backbone could bind galectin-3, which was insensitive to lactose treatment. The novel discovery that the side chains and backbone play distinct roles in regulating RG-I-4 activity is valuable for producing highly active pectin-based galectin-3 inhibitors.


Carbohydrate Research | 2009

Preparation of a glucan from the roots of Rubus crataegifolius Bge. and its immunological activity.

Weihua Ni; Xu Zhang; Hongtao Bi; Jeff Iteku; Li Ji; Chengxin Sun; Jinbo Fang; Guihua Tai; Yifa Zhou; Jimin Zhao

A water-soluble glucan (RCP-1) was prepared from the roots of Rubus crataegifolius Bge. by extraction with hot-water, deproteination by Sevag reagent, alpha-amylase treatment and ultrafiltration. RCP-1 consisted of only glucose, and its molecular weight was determined to be approximately 7KD by high performance gel permeation chromatography (HPGPC). Fourier transform infra-red spectroscopy (FT-IR), nuclear magnetic resonance spectroscopy (NMR), methylation and periodate oxidation analyses indicated that RCP-1 was an alpha-d-glucan. Its main chains were composed of (1-->4)- and (1-->6)-linked alpha-glucopyranosyls, and side chains were single alpha-glucopyranosyl residues attached to the O-6 of glucosyls in the main chains. RCP-1 could increase both cytotoxic activity against B16 melanoma cells and the production of nitric oxide (NO) of macrophages in vitro. Furthermore, in vivo bioassay tests indicated that RCP-1 could remarkably enhance T and B lymphocyte proliferations, augment the phagocytosis of macrophages and increase the tumour necrosis factor-alpha (TNF-alpha) levels in serum.


PLOS ONE | 2012

The Two Endocytic Pathways Mediated by the Carbohydrate Recognition Domain and Regulated by the Collagen-like Domain of Galectin-3 in Vascular Endothelial Cells

Xiaoge Gao; Dan Liu; Yuying Fan; Huiting Xue; Yingyun Ma; Yifa Zhou; Guihua Tai

Galectin-3 plays an important role in endothelial morphogenesis and angiogenesis. We investigated the endocytosis of galectin-3 in human vascular endothelial cells and showed that galectin-3 could associate with and internalized into the cells in a carbohydrate-dependent manner. Our work also revealed that galectin-3 was transported to the early/recycling endosomes and then partitioned into two routes – recycling back to the plasma membrane or targeting to the late endosomes/lysosomes. Various N- and C-terminal truncated forms of galectin-3 were constructed and compared with the full-length protein. These comparisons showed that the carbohydrate-recognition domain of galectin-3 was required for galectin-3 binding and endocytosis. The N-terminal half of the protein, which comprises the N-terminal leader domain and the collagen-like internal repeating domain, could not mediate binding and endocytosis alone. The collagen-like domain, although it was largely irrelevant to galectin-3 trafficking to the early/recycling endosomes, was required for targeting galectin-3 to the late endosomes/lysosomes. In contrast, the leader domain was irrelevant to both binding and intracellular trafficking. The data presented in this study correlate well with different cellular behaviors induced by the full-length and the truncated galectin-3 and provide an alternative way of understanding its angiogenic mechanisms.


International Journal of Food Sciences and Nutrition | 2013

The inhibitory effects and mechanisms of rhamnogalacturonan I pectin from potato on HT-29 colon cancer cell proliferation and cell cycle progression

Hairong Cheng; Zhongyu Zhang; Jiayi Leng; Dan Liu; Miao Hao; Xiaoge Gao; Guihua Tai; Yifa Zhou

Pectin is an important dietary component of all fruits and vegetables. Some pectins have been shown to inhibit cancer cell growth, but the effective structures and mechanisms have remained unclear. In this study, we investigated the effects of four structurally distinct pectins on human colon cancer HT-29 cells and the possible mechanisms accounting for the actions. The proliferation inhibitory effect was examined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Flow cytometry was used to visualize the cell cycle distribution. An reverse transcription polymerase chain reaction (RT-PCR)-based assay was utilized to detect mRNA levels of the proteins related to cell cycle arrest. The data showed that the rhamnogalacturonan I domain-rich pectin from potato inhibited the proliferation of HT-29 cells and induced significant G2/M cell cycle arrest. This inhibitory effect was due to the down-regulation of cyclin B1 and cyclin-dependent kinase 1 expression, but not p21WAF1/CIP1 expression. The results suggested that the rhamnogalacturonan I domain might relate to the anticancer activity of pectin.


Pharmaceutical Biology | 2010

In vivo antimalarial activities of glycoalkaloids isolated from Solanaceae plants

Yan Chen; Shengyu Li; Fang Sun; Han Han; Xu Zhang; Yuying Fan; Guihua Tai; Yifa Zhou

Context: Malaria is one of the most common and serious protozoan tropical diseases. Multi-drug resistance remains pervasive, necessitating the continuous development of new antimalarial agents. Objective: Many glycosides, such as triterpenoid saponins, were shown to have antimalarial activity against Plasmodium falciparum in vitro. This study was to elucidate the ability of five glycoalkaloids against Plasmodium yoelii and develop new antimalarial lead compounds. Materials and methods: Glycoalkaloids were isolated from three kinds of Solanaceae plants: chaconine and solanine were isolated from Solanum tuberosum L. sprouts, solamargine and solasonine from Solanum nigrum L. fruit, tomatine from Lycopersicon esculentum Mill. fruit. The five isolated glycoalkaloids were evaluated against Plasmodium yoelii 17XL in mice with 4-day parasitemia suppression test in different concentrations. Results: Chaconine showed a dose-dependent suppression of malaria infection, ED50, 4.49 mg/kg; therapeutic index (TI), ≈9. At a dose of 7.50 mg/kg, the parasitemia suppressions of chaconine, tomatine, solamargine, solasonine and solanine were 71.38, 65.25, 64.89, 57.47 and 41.30%, respectively. At 3.75 mg/kg, the parasitemia suppression of chaconine was 42.66%, but the derivative, chaconine-6-O-sulfate, appeared to show no antimalarial activity. Simultaneous administration of chaconine and solanine in 1:1 did not show any synergistic effects. Discussion and conclusion: The results showed that the glycoalkaloids with chacotriose (chaconine and solamargine) were more active than those with solatriose (solanine and solasonine). Chaconine was the most active among the five glycoalkaloids. We propose that the activity is dependent upon non-specific carbohydrate interactions. The 6-OH of chaconine is important for antimalarial activity.


Glycobiology | 2016

Intra- and intermolecular interactions of human galectin-3: assessment by full-assignment-based NMR

Hans Ippel; Michelle C. Miller; Sabine Vértesy; Yi Zheng; F. Javier Cañada; Dennis Suylen; Kimiko Umemoto; Cecilia Romanò; Tilman M. Hackeng; Guihua Tai; Hakon Leffler; Jürgen Kopitz; Sabine André; Dieter Kübler; Jesús Jiménez-Barbero; Stefan Oscarson; Hans-Joachim Gabius; Kevin H. Mayo

Galectin-3 is an adhesion/growth-regulatory protein with a modular design comprising an N-terminal tail (NT, residues 1-111) and the conserved carbohydrate recognition domain (CRD, residues 112-250). The chimera-type galectin interacts with both glycan and peptide motifs. Complete (13)C/(15)N-assignment of the human protein makes NMR-based analysis of its structure beyond the CRD possible. Using two synthetic NT polypeptides covering residues 1-50 and 51-107, evidence for transient secondary structure was found with helical conformation from residues 5 to 15 as well as proline-mediated, multi-turn structure from residues 18 to 32 and around PGAYP repeats. Intramolecular interactions occur between the CRD F-face (the 5-stranded β-sheet behind the canonical carbohydrate-binding 6-stranded β-sheet of the S-face) and NT in full-length galectin-3, with the sequence P(23)GAW(26)…P(37)GASYPGAY(45) defining the primary binding epitope within the NT. Work with designed peptides indicates that the PGAX motif is crucial for self-interactions between NT/CRD. Phosphorylation at position Ser6 (and Ser12) (a physiological modification) and the influence of ligand binding have minimal effect on this interaction. Finally, galectin-3 molecules can interact weakly with each other via the F-faces of their CRDs, an interaction that appears to be assisted by their NTs. Overall, our results add insight to defining binding sites on galectin-3 beyond the canonical contact area for β-galactosides.


Carbohydrate Research | 2009

A novel water-soluble β-(1->6)-D-glucan isolated from the fruit bodies of Bulgaria inquinans (Fries).

Hongtao Bi; Xiuzhen Ni; Xiaoyu Liu; Jeff Iteku; Guihua Tai; Yifa Zhou; Jimin Zhao

A low molecular-weight polysaccharide named BIWP2 was purified from the fruit bodies of Bulgaria Inquinans (Fries) via hot-water extraction, followed by freeze-thawing and gel filtration chromatography on Sephadex G-75. Monosaccharide composition analysis revealed that BIWP2 contained exclusively glucose. High performance size exclusion chromatography (HPSEC) showed that it was a homogeneous polysaccharide fraction. Its molecular weight was estimated to be 2.6 KD and the polydispersity index (M(w)/M(n)) was calculated to be 1.4. Periodate oxidation, methylation, and NMR analyses indicated that BIWP2 was a linear beta-(1-->6)-D-glucan without side chains. This is the first time to report a linear beta-(1-->6)-D-glucan with low molecular weight in non-lichenized ascomycete.


Cell Death and Disease | 2016

Ginsenoside compound K sensitizes human colon cancer cells to TRAIL-induced apoptosis via autophagy-dependent and -independent DR5 upregulation.

Lei Chen; Yue Meng; Qi Sun; Zhongyu Zhang; Xiaoqing Guo; Xiaotong Sheng; Guihua Tai; Hairong Cheng; Yifa Zhou

Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is a potent cancer cell-specific apoptosis-inducing cytokine with little toxicity to most normal cells. However, acquired resistance of cancer cells to TRAIL is a roadblock. Agents that can either potentiate the effect of TRAIL or overcome resistance to TRAIL are urgently needed. This article reports that ginsenoside compound K (CK) potentiates TRAIL-induced apoptosis in HCT116 colon cancer cells and sensitizes TRAIL-resistant colon cancer HT-29 cells to TRAIL. On a cellular mechanistic level, CK downregulated cell survival proteins including Mcl-1, Bcl-2, surviving, X-linked inhibitor of apoptosis protein and Fas-associated death domain-like IL-1-converting enzyme-inhibitory protein, upregulated cell pro-apoptotic proteins including Bax, tBid and cytochrome c, and induced the cell surface expression of TRAIL death receptor DR5. Reduction of DR5 levels by siRNAs significantly decreases CK- and TRAIL-mediated apoptosis. Importantly, our results indicate, for the first time, that DR5 upregulation is mediated by autophagy, as blockade of CK-induced autophagy by 3-MA, LY294002 or Atg7 siRNAs substantially decreases DR5 upregulation and reduces the synergistic effect. Furthermore, CK-stimulated autophagy is mediated by the reactive oxygen species–c-Jun NH2-terminal kinase pathway. Moreover, we found that p53 and the C/EBP homologous (CHOP) protein is also required for DR5 upregulation but not related with autophagy. Our findings contribute significantly to the understanding of the mechanism accounted for the synergistic anticancer activity of CK and TRAIL, and showed a novel mechanism related with DR5 upregulation.

Collaboration


Dive into the Guihua Tai's collaboration.

Top Co-Authors

Avatar

Yifa Zhou

Northeast Normal University

View shared research outputs
Top Co-Authors

Avatar

Hairong Cheng

Northeast Normal University

View shared research outputs
Top Co-Authors

Avatar

Yuying Fan

Northeast Normal University

View shared research outputs
Top Co-Authors

Avatar

Yi Zheng

Northeast Normal University

View shared research outputs
Top Co-Authors

Avatar

Zhongyu Zhang

Northeast Normal University

View shared research outputs
Top Co-Authors

Avatar

Juan Gao

Northeast Normal University

View shared research outputs
Top Co-Authors

Avatar

Chengxin Sun

Northeast Normal University

View shared research outputs
Top Co-Authors

Avatar

Jiyong Su

Northeast Normal University

View shared research outputs
Top Co-Authors

Avatar

Xiaoge Gao

Northeast Normal University

View shared research outputs
Top Co-Authors

Avatar

Xu Zhang

Northeast Normal University

View shared research outputs
Researchain Logo
Decentralizing Knowledge