Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Guijian Guan is active.

Publication


Featured researches published by Guijian Guan.


Journal of the American Chemical Society | 2011

Instant Visual Detection of Trinitrotoluene Particulates on Various Surfaces by Ratiometric Fluorescence of Dual-Emission Quantum Dots Hybrid

Kui Zhang; Haibo Zhou; Qingsong Mei; Suhua Wang; Guijian Guan; Renyong Liu; Jian Zhang; Zhongping Zhang

To detect trace trinitrotoluene (TNT) explosives deposited on various surfaces instantly and on-site still remains a challenge for homeland security needs against terrorism. This work demonstrates a new concept and its utility for visual detection of TNT particulates on various package materials. The concept takes advantages of the superior fluorescent properties of quantum dots (QDs) for visual signal output via ratiometric fluorescence, the feasibility of surface grafting of QDs for chemical recognition of TNT, and the ease of operation of the fingerprint lifting technique. Two differently sized CdTe QDs emitting red and green fluorescences, respectively, have been hybridized by embedding the red-emitting one in silica nanoparticles and covalently linking the green-emitting one to the silica surface, respectively, to form a dual-emissive fluorescent hybrid nanoparticle. The fluorescence of red QDs in the silica nanoparticles stays constant, whereas the green QDs functionalized with polyamine can selectively bind TNT by the formation of Meisenheimer complex, leading to the green fluorescence quenching due to resonance energy transfer. The variations of the two fluorescence intensity ratios display continuous color changes from yellow-green to red upon exposure to different amounts of TNT. By immobilization of the probes on a piece of filter paper, a fingerprint lifting technique has been innovated to visualize trace TNT particulates on various surfaces by the appearance of a different color against a yellow-green background under a UV lamp. This method shows high selectivity and sensitivity with a detection limit as low as 5 ng/mm(2) on a manila envelope and the attribute of being seen with the naked eye.


Analyst | 2010

A simple, reliable and sensitive colorimetric visualization of melamine in milk by unmodified gold nanoparticles

Hong Chi; Bianhua Liu; Guijian Guan; Zhongping Zhang; Ming-Yong Han

In this paper, we report a simple, reliable and sensitive colourimetric visualization of melamine in milk products using citrate-stabilized gold nanoparticles (Au NPs). Upon exposure to ppb-level melamine, gold nanoparticle solution exhibits a highly sensitive colour change from red to blue and rapid aggregation kinetics within the initial 5 min, which can directly be seen with the naked eye and monitored by UV-vis absorbance spectra. As confirmed by the comparison with six other typical amino compounds, the melamine molecule itself contains multiple strong-binding sites to the surface of Au NPs and thus plays a role of molecular linker to efficiently crosslink Au NPs. Further evidence is that the sensitivity is significantly improved when NaHSO(4) is added to promote the ligand exchange between citrate and melamine at the surface of Au NPs. The NaHSO(4)-optimized Au NPs system provides a rapid colourimetric assay for the rapid detection of melamine down to approximately 25 ppb in real milk products.


Journal of the American Chemical Society | 2015

Protein Induces Layer-by-Layer Exfoliation of Transition Metal Dichalcogenides

Guijian Guan; Shuang-Yuan Zhang; Shuhua Liu; Yongqing Cai; Michelle Low; Choon Peng Teng; In Yee Phang; Yuan Cheng; Koh Leng Duei; Bharathi Madurai Srinivasan; Yuangang Zheng; Yong-Wei Zhang; Ming-Yong Han

Here, we report a general and facile method for effective layer-by-layer exfoliation of transition metal dichalcogenides (TMDs) and graphite in water by using protein, bovine serum albumin (BSA) to produce single-layer nanosheets, which cannot be achieved using other commonly used bio- and synthetic polymers. Besides serving as an effective exfoliating agent, BSA can also function as a strong stabilizing agent against reaggregation of single-layer nanosheets for greatly improving their biocompatibility in biomedical applications. With significantly increased surface area, single-layer MoS2 nanosheets also exhibit a much higher binding capacity to pesticides and a much larger specific capacitance. The protein exfoliation process is carefully investigated with various control experiments and density functional theory simulations. It is interesting to find that the nonpolar groups of protein can firmly bind to TMD layers or graphene to expose polar groups in water, facilitating the effective exfoliation of single-layer nanosheets in aqueous solution. The present work will enable to optimize the fabrication of various 2D materials at high yield and large scale, and bring more opportunities to investigate the unique properties of 2D materials and exploit their novel applications.


Analytical Chemistry | 2010

Ligand Replacement-Induced Fluorescence Switch of Quantum Dots for Ultrasensitive Detection of Organophosphorothioate Pesticides

Kui Zhang; Qingsong Mei; Guijian Guan; Bianhua Liu; Suhua Wang; Zhongping Zhang

The development of a simple and on-site assay for the detection of organophosphorus pesticed residues is very important for food safety and exosystem protection. This paper reports the surface coordination-originated fluorescence resonance energy transfer (FRET) of CdTe quantum dots (QDs) and a simple ligand-replacement turn-on mechanism for the highly sensitive and selective detection of organophosphorothioate pesticides. It has been demonstrated that coordination of dithizone at the surface of CdTe QDs in basic media can strongly quench the green emission of CdTe QDs by a FRET mechanism. Upon the addition of organophosphorothioate pesticides, the dithizone ligands at the CdTe QD surface are replaced by the hydrolyzate of the organophosphorothioate, and hence the fluorescence is turned on. The fluorescence turn on is immediate, and the limit of detection for chlorpyrifos is as low as ∼0.1 nM. Two consecutive linear ranges allow a wide determination of chlorpyrifos concentrations from 0.1 nM to 10 μM. Importantly, the fluorescence turn-on chemosensor can directly detect chlorpyrifos residues in apples at a limit of 5.5 ppb, which is under the maximum residue limit allowed by the U.S. Environmental Protection Agency. The very simple strategy reported here should facilitate the development of fluorescence turn-on chemosensors for chemo/biodetection.


Sensors | 2008

Imprinting of Molecular Recognition Sites on Nanostructures and Its Applications in Chemosensors.

Guijian Guan; Bianhua Liu; Zhenyang Wang; Zhongping Zhang

Biological receptors including enzymes, antibodies and active proteins have been widely used as the detection platform in a variety of chemo/biosensors and bioassays. However, the use of artificial host materials in chemical/biological detections has become increasingly attractive, because the synthetic recognition systems such as molecularly imprinted polymers (MIPs) usually have lower costs, higher physical/chemical stability, easier preparation and better engineering possibility than biological receptors. Molecular imprinting is one of the most efficient strategies to offer a synthetic route to artificial recognition systems by a template polymerization technique, and has attracted considerable efforts due to its importance in separation, chemo/biosensors, catalysis and biomedicine. Despite the fact that MIPs have molecular recognition ability similar to that of biological receptors, traditional bulky MIP materials usually exhibit a low binding capacity and slow binding kinetics to the target species. Moreover, the MIP materials lack the signal-output response to analyte binding events when used as recognition elements in chemo/biosensors or bioassays. Recently, various explorations have demonstrated that molecular imprinting nanotechniques may provide a potential solution to these difficulties. Many successful examples of the development of MIP-based sensors have also been reported during the past several decades. This review will begin with a brief introduction to the principle of molecular imprinting nanotechnology, and then mainly summarize various synthesis methodologies and recognition properties of MIP nanomaterials and their applications in MIP-based chemosensors. Finally, the future perspectives and efforts in MIP nanomaterials and MIP-based sensors are given.


Chemistry: A European Journal | 2009

Inverted Opal Fluorescent Film Chemosensor for the Detection of Explosive Nitroaromatic Vapors through Fluorescence Resonance Energy Transfer

Qunling Fang; Junlong Geng; Bianhua Liu; Daming Gao; Fei Li; Zhenyang Wang; Guijian Guan; Zhongping Zhang

This paper reports an inverted opal fluorescence chemosensor for the ultrasensitive detection of explosive nitroaromatic vapors through resonance-energy-transfer-amplified fluorescence quenching. The inverted opal silica film with amino ligands was first fabricated by the acid-base interaction between 3-aminopropyltriethoxysilane and surface sulfonic groups on polystyrene microsphere templates. The fluorescent dye was then chemically anchored onto the interconnected porous surface to form a hybrid monolayer of amino ligands and dye molecules. The amino ligands can efficiently capture vapor molecules of nitroaromatics such as 2,4,6-trinitrotoluene (TNT) through the charge-transfer complexing interaction between electron-rich amino ligands and electron-deficient aromatic rings. Meanwhile, the resultant TNT-amine complexes can strongly suppress the fluorescence emission of the chosen dye by the fluorescent resonance energy transfer (FRET) from the dye donor to the irradiative TNT-amino acceptor through intermolecular polar-polar resonance at spatial proximity. The quenching response of the highly ordered porous films with TNT is greatly amplified by at least 10-fold that of the amorphous silica films, due to the interconnected porous structure and large surface-to-volume ratio. The inverted opal film with a stable fluorescence brightness and strong analyte affinity has lead to an ultrasensitive detection of several ppb of TNT vapor in air.


Analytica Chimica Acta | 2013

Ratiometric fluorescence detection of mercuric ion based on the nanohybrid of fluorescence carbon dots and quantum dots

Benmei Cao; Chao Yuan; Bianhua Liu; Changlong Jiang; Guijian Guan; Ming-Yong Han

A novel nanohybrid ratiometric fluorescence probe comprised of carbon dots (C-dots) and hydrophilic CdSe@ZnS quantum dots (QDs) has been developed by simply mixing the blue-emission C-dots with red-emission carboxylmethyldithiocarbamate modified CdSe@ZnS QDs (GDTC-QDs). The nanohybrid ratiometric fluorescence probe exhibits dual emissions at 436 nm and 629 nm under a single excitation wavelength. Due to the strong chelating ability of GDTC on the surface of QDs to mercuric ion (Hg(2+)), the fluorescence of the GDTC-QDs in the nanohybrid system could be selectively quenched in the presence of Hg(2+) while the fluorescence of the C-dots remained constant, resulting in an obviously distinguishable fluorescence color evolution (from red to blue) of the nanohybrid system. The detection limit of this method was found to be as low as 0.1 μM. Furthermore, the recovery result for Hg(2+) in real samples including tap water and lake water by this method was satisfying, suggesting its potential application for Hg(2+) sensing.


Chemistry: A European Journal | 2010

A Reversible Dual-Response Fluorescence Switch for the Detection of Multiple Analytes

Junlong Geng; Ping Liu; Bianhua Liu; Guijian Guan; Zhongping Zhang; Ming-Yong Han

This paper reports a reversible dual fluorescence switch for the detection of a proton target and 2,4,6-trinitrotoluene (TNT) with opposite-response results, based on fluorophore derivatization of silica nanoparticles. Fluorescent silica nanoparticles were synthesized through modification of the surface with a nitrobenzoxadiazole (NBD) fluorophore and an organic amine to form a hybrid monolayer of fluorophores and amino ligands; the resultant nanoparticles showed different fluorescence responses to the proton target and TNT. Protonation of the amino ligands leads to fluorescence enhancement due to inhibition of photoinduced electron transfer (PET) between the amine and fluorophore. By contrast, addition of TNT results in fluorescence quenching because a fluorescence resonance energy transfer (FRET) happens between the NBD fluorophore and the formed TNT-amine complex. The fluorescence signal is reversible through washing with the proper solvents and the nanoparticles can be reused after centrifugal separation. Furthermore, these nanoparticles were assembled into chips on an etched silicon wafer for the detection of TNT and the proton target. The assembled chip can be used as a convenient indicator of herbicide (2,4-dichlorophenoxyacetic acid) and TNT residues with the use of only 10 microL of sample. The simple NBD-grafted silica nanoparticles reported here show a reversible signal and good assembly flexibility; thus, they can be applied in multianalyte detection.


Analyst | 2011

Surface-enhanced Raman scattering sensor for theophylline determination by molecular imprinting on silver nanoparticles

Ping Liu; Renyong Liu; Guijian Guan; Changlong Jiang; Suhua Wang; Zhongping Zhang

A surface-enhanced Raman scattering (SERS)-based sensor for the determination of theophylline (THO) has been developed by imprinting the target molecules on the surface of silver nanoparticles. The desired recognition sites are generated after template removal and homogeneous distribution on the silver nanoparticles that have been incorporated within polymer matrix by the in situ reduction of theophylline-silver complexes, providing molecular recognition ability and SERS active surfaces. The theophylline molecules, complementary to the shape, size, and functionality of the recognition cavities, can selectively bind to the recognition sites at the surface of silver nanoparticles driven by the formation of hydrogen bonding and surface coordination. It has been demonstrated that the SERS signals of the theophylline molecules captured on the surface of the silver nanoparticles have a good reproducibility and a dose-response relationship to the target analytes, showing the potential for reliable identification and quantification of the bioactive compound. The molecular imprinting-based SERS sensor, like antibodies or enzymes, also possesses the ability to distinguish theophylline from the closely related structure caffeine due to the variations of molecular size and shape as well as the different affinity to silver ions.


Analytica Chimica Acta | 2011

Molecularly imprinted polypyrrole nanonecklaces for detection of herbicide through molecular recognition-amplifying current response

Guijian Guan; Shuangshuang Wang; Haibo Zhou; Kui Zhang; Renyong Liu; Qingsong Mei; Suhua Wang; Zhongping Zhang

Molecularly imprinted polypyrrole (PPy) nanonecklaces were facilely synthesized through a two-step oxidative polymerization route for the amperometric detection of non-electrochemically active herbicide. It has been demonstrated that dissolved oxygen can preoxidize pyrrole to form PPy oligomer bundles, which further self-assemble into necklace-like micelles in the presence of cetyltrimethylammonium bromide. Subsequently, these microstructures were immediately gelled through quick polymerization of residual pyrrole monomers, leading to the formation of PPy nanonecklaces. Meanwhile, herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) was synchronously imprinted into the formed PPy and highly dense imprinted sites were generated in PPy nanonecklaces because the necklace-like structure with microgaps/pores provides the facile and complete removal of templates. The imprinted nanonecklaces exhibit the high capacity and fast kinetics to uptake 2,4-D molecules, and produce a imprinting factor of ~4.2. Importantly, the recognition and binding to 2,4-D significantly amplify the current response by a factor of 8 times in amperometric measurements, providing a sensitive detection of 2,4-D. The molecular imprinting strategy opens a novel avenue to the direct detection of non-electrochemically active species in a more convenient, simpler and cheaper way than the traditional competition-displacing approaches.

Collaboration


Dive into the Guijian Guan's collaboration.

Top Co-Authors

Avatar

Zhongping Zhang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bianhua Liu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Suhua Wang

North China Electric Power University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Renyong Liu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kui Zhang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Qingsong Mei

Chinese Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge