Guilherme V. Silva
St Lukes Episcopal Hospital
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Guilherme V. Silva.
Circulation | 2003
Emerson C. Perin; Hans Fernando Rocha Dohmann; Radovan Borojevic; Suzana A. Silva; André Luiz Silveira Sousa; Cláudio Tinoco Mesquita; Maria Isabel Doria Rossi; Antonio Carlos Campos de Carvalho; Hélio S. Dutra; Hans F. Dohmann; Guilherme V. Silva; Luciano Belém; Ricardo Vivacqua; Fernando Oswaldo Dias Rangel; Roberto Esporcatte; Yong J. Geng; William K. Vaughn; Joao A Assad; Evandro Tinoco Mesquita; James T. Willerson
Background—This study evaluated the hypothesis that transendocardial injections of autologous mononuclear bone marrow cells in patients with end-stage ischemic heart disease could safely promote neovascularization and improve perfusion and myocardial contractility. Methods and Results—Twenty-one patients were enrolled in this prospective, nonrandomized, open-label study (first 14 patients, treatment; last 7 patients, control). Baseline evaluations included complete clinical and laboratory evaluations, exercise stress (ramp treadmill), 2D Doppler echocardiogram, single-photon emission computed tomography perfusion scan, and 24-hour Holter monitoring. Bone marrow mononuclear cells were harvested, isolated, washed, and resuspended in saline for injection by NOGA catheter (15 injections of 0.2 cc). Electromechanical mapping was used to identify viable myocardium (unipolar voltage ≥6.9 mV) for treatment. Treated and control patients underwent 2-month noninvasive follow-up, and treated patients alone underwent a 4-month invasive follow-up according to standard protocols and with the same procedures used as at baseline. Patient population demographics and exercise test variables did not differ significantly between the treatment and control groups; only serum creatinine and brain natriuretic peptide levels varied in laboratory evaluations at follow-up, being relatively higher in control patients. At 2 months, there was a significant reduction in total reversible defect and improvement in global left ventricular function within the treatment group and between the treatment and control groups (P =0.02) on quantitative single-photon emission computed tomography analysis. At 4 months, there was improvement in ejection fraction from a baseline of 20% to 29% (P =0.003) and a reduction in end-systolic volume (P =0.03) in the treated patients. Electromechanical mapping revealed significant mechanical improvement of the injected segments (P <0.0005) at 4 months after treatment. Conclusions—Thus, the present study demonstrates the relative safety of intramyocardial injections of bone marrow–derived stem cells in humans with severe heart failure and the potential for improving myocardial blood flow with associated enhancement of regional and global left ventricular function.
Circulation | 2005
Guilherme V. Silva; Silvio Litovsky; Joao A Assad; André Luiz Silveira Sousa; Bradley J. Martin; Deborah Vela; Stephanie C. Coulter; Jing Lin; Judy Ober; William K. Vaughn; Rodrigo Branco; Edie M. Oliveira; Rumin He; Yong Jian Geng; James T. Willerson; Emerson C. Perin
Background—Bone marrow–derived stem cells are under investigation as a treatment for ischemic heart disease. Mesenchymal stem cells (MSCs) have been used preferentially in the acute ischemia model; data in the chronic ischemia model are lacking. Methods and Results—Twelve dogs underwent ameroid constrictor placement. Thirty days later, they received intramyocardial injections of either MSCs (100×106 MSCs/10 mL saline) (n=6) or saline only (10 mL) (controls) (n=6). All were euthanized at 60 days. Resting and stress 2D echocardiography was performed at 30 and 60 days after ameroid placement. White blood cell count (WBC), C-reactive protein (CRP), creatine kinase MB (CK-MB), and troponin I levels were measured. Histopathological and immunohistochemical analyses were performed. Mean left ventricular ejection fraction was similar in both groups at baseline but significantly higher in treated dogs at 60 days. WBC and CRP levels were similar over time in both groups. CK-MB and troponin I increased from baseline to 48 hours, eventually returning to baseline. There was a trend toward reduced fibrosis and greater vascular density in the treated group. MSCs colocalized with endothelial and smooth muscle cells but not with myocytes. Conclusions—In a canine chronic ischemia model, MSCs differentiated into smooth muscle cells and endothelial cells, resulting in increased vascularity and improved cardiac function.
Circulation | 2004
Emerson C. Perin; Hans Fernando Rocha Dohmann; Radovan Borojevic; Suzana A. Silva; André Luiz Silveira Sousa; Guilherme V. Silva; Cláudio Tinoco Mesquita; Luciano Belém; William K. Vaughn; Fernando Oswaldo Dias Rangel; Joao A Assad; Antonio Carlos Campos de Carvalho; Rodrigo Branco; Maria Isabel Doria Rossi; Hans F. Dohmann; James T. Willerson
Background—We recently reported the safety and feasibility of autologous bone marrow mononuclear cell (ABMMNC) injection into areas of ischemic myocardium in patients with end-stage ischemic cardiomyopathy. The present study evaluated the safety and efficacy of this therapy at 6- and 12-month follow-up. Methods and Results—Twenty patients with 6- and 12-month follow-up (11 treated subjects; 9 controls) were enrolled in this prospective, nonrandomized, open-label study. Complete clinical and laboratory evaluations as well as exercise stress (ramp treadmill), 2-dimensional Doppler echocardiography, single-photon emission computed tomography (SPECT) perfusion scanning, and 24-hour Holter monitoring were performed at baseline and follow-up. Transendocardial delivery of ABMMNCs was performed with the aid of electromechanical mapping to identify viable myocardium. Each patient received 15 ABMMNC injections of 0.2 mL each. At 6 and 12 months, total reversible defect, as measured by SPECT perfusion scanning, was significantly reduced in the treatment group as compared with the control group. At 12 months, exercise capacity was significantly improved in the treatment group. This improvement correlated well with monocyte, B-cell, hematopoietic progenitor cell, and early hemapoietic progenitor cell phenotypes. Conclusions—The 6- and 12-month follow-up data in this study suggest that transendocardial injection of ABMMNCs in patients with end-stage ischemic heart disease may produce a durable therapeutic effect and improve myocardial perfusion and exercise capacity.
JAMA | 2012
Emerson C. Perin; James T. Willerson; Carl J. Pepine; Timothy D. Henry; Stephen G. Ellis; David Zhao; Guilherme V. Silva; Dejian Lai; James D. Thomas; Marvin W. Kronenberg; A. Daniel Martin; R. David Anderson; Jay H. Traverse; Marc S. Penn; Saif Anwaruddin; Antonis K. Hatzopoulos; Adrian P. Gee; Doris A. Taylor; Christopher R. Cogle; Deirdre Smith; Lynette Westbrook; James Chen; Eileen Handberg; Rachel E. Olson; Carrie Geither; Sherry Bowman; Judy Francescon; Sarah Baraniuk; Linda B. Piller; Lara M. Simpson
CONTEXT Previous studies using autologous bone marrow mononuclear cells (BMCs) in patients with ischemic cardiomyopathy have demonstrated safety and suggested efficacy. OBJECTIVE To determine if administration of BMCs through transendocardial injections improves myocardial perfusion, reduces left ventricular end-systolic volume (LVESV), or enhances maximal oxygen consumption in patients with coronary artery disease or LV dysfunction, and limiting heart failure or angina. DESIGN, SETTING, AND PATIENTS A phase 2 randomized double-blind, placebo-controlled trial of symptomatic patients (New York Heart Association classification II-III or Canadian Cardiovascular Society classification II-IV) with a left ventricular ejection fraction of 45% or less, a perfusion defect by single-photon emission tomography (SPECT), and coronary artery disease not amenable to revascularization who were receiving maximal medical therapy at 5 National Heart, Lung, and Blood Institute-sponsored Cardiovascular Cell Therapy Research Network (CCTRN) sites between April 29, 2009, and April 18, 2011. INTERVENTION Bone marrow aspiration (isolation of BMCs using a standardized automated system performed locally) and transendocardial injection of 100 million BMCs or placebo (ratio of 2 for BMC group to 1 for placebo group). MAIN OUTCOME MEASURES Co-primary end points assessed at 6 months: changes in LVESV assessed by echocardiography, maximal oxygen consumption, and reversibility on SPECT. Phenotypic and functional analyses of the cell product were performed by the CCTRN biorepository core laboratory. RESULTS Of 153 patients who provided consent, a total of 92 (82 men; average age: 63 years) were randomized (n = 61 in BMC group and n = 31 in placebo group). Changes in LVESV index (-0.9 mL/m(2) [95% CI, -6.1 to 4.3]; P = .73), maximal oxygen consumption (1.0 [95% CI, -0.42 to 2.34]; P = .17), and reversible defect (-1.2 [95% CI, -12.50 to 10.12]; P = .84) were not statistically significant. There were no differences found in any of the secondary outcomes, including percent myocardial defect, total defect size, fixed defect size, regional wall motion, and clinical improvement. CONCLUSION Among patients with chronic ischemic heart failure, transendocardial injection of autologous BMCs compared with placebo did not improve LVESV, maximal oxygen consumption, or reversibility on SPECT. TRIAL REGISTRATION clinicaltrials.gov Identifier: NCT00824005.
JAMA | 2011
Jay H. Traverse; Timothy D. Henry; Stephen G. Ellis; Carl J. Pepine; James T. Willerson; David Zhao; John R. Forder; Barry J. Byrne; Antonis K. Hatzopoulos; Marc S. Penn; Emerson C. Perin; Kenneth W. Baran; Jeffrey W. Chambers; Charles R. Lambert; Ganesh Raveendran; Daniel I. Simon; Douglas E. Vaughan; Lara M. Simpson; Adrian P. Gee; Doris A. Taylor; Christopher R. Cogle; James D. Thomas; Guilherme V. Silva; Beth C. Jorgenson; Rachel E. Olson; Sherry Bowman; Judy Francescon; Carrie Geither; Eileen Handberg; Deirdre Smith
CONTEXT Clinical trial results suggest that intracoronary delivery of autologous bone marrow mononuclear cells (BMCs) may improve left ventricular (LV) function when administered within the first week following myocardial infarction (MI). However, because a substantial number of patients may not present for early cell delivery, the efficacy of autologous BMC delivery 2 to 3 weeks post-MI warrants investigation. OBJECTIVE To determine if intracoronary delivery of autologous BMCs improves global and regional LV function when delivered 2 to 3 weeks following first MI. DESIGN, SETTING, AND PATIENTS A randomized, double-blind, placebo-controlled trial (LateTIME) of the National Heart, Lung, and Blood Institute-sponsored Cardiovascular Cell Therapy Research Network of 87 patients with significant LV dysfunction (LV ejection fraction [LVEF] ≤45%) following successful primary percutaneous coronary intervention (PCI) between July 8, 2008, and February 28, 2011. INTERVENTIONS Intracoronary infusion of 150 × 10(6) autologous BMCs (total nucleated cells) or placebo (BMC:placebo, 2:1) was performed within 12 hours of bone marrow aspiration after local automated cell processing. MAIN OUTCOME MEASURES Changes in global (LVEF) and regional (wall motion) LV function in the infarct and border zone between baseline and 6 months, measured by cardiac magnetic resonance imaging. Secondary end points included changes in LV volumes and infarct size. RESULTS A total of 87 patients were randomized (mean [SD] age, 57 [11] years; 83% men). Harvesting, processing, and intracoronary delivery of BMCs in this setting was feasible. Change between baseline and 6 months in the BMC group vs placebo for mean LVEF (48.7% to 49.2% vs 45.3% to 48.8%; between-group mean difference, -3.00; 95% CI, -7.05 to 0.95), wall motion in the infarct zone (6.2 to 6.5 mm vs 4.9 to 5.9 mm; between-group mean difference, -0.70; 95% CI, -2.78 to 1.34), and wall motion in the border zone (16.0 to 16.6 mm vs 16.1 to 19.3 mm; between-group mean difference, -2.60; 95% CI, -6.03 to 0.77) were not statistically significant. No significant change in LV volumes and infarct volumes was observed; both groups decreased by a similar amount at 6 months vs baseline. CONCLUSION Among patients with MI and LV dysfunction following reperfusion with PCI, intracoronary infusion of autologous BMCs vs intracoronary placebo infusion, 2 to 3 weeks after PCI, did not improve global or regional function at 6 months. TRIAL REGISTRATION clinicaltrials.gov Identifier: NCT00684060.
American Heart Journal | 2014
Emerson C. Perin; Ricardo Sanz-Ruiz; Pedro L. Sánchez; José M. Lasso; Rosa Pérez-Cano; Juan C. Alonso-Farto; Esther Pérez-David; María Eugenia Fernández-Santos; Patrick W. Serruys; Henrick J. Duckers; Jens Kastrup; Steven A. J. Chamuleau; Yi Zheng; Guilherme V. Silva; James T. Willerson; Francisco Fernández-Avilés
AIMS Adipose-derived regenerative cells (ADRCs) can be isolated from liposuction aspirates and prepared as fresh cells for immediate administration in cell therapy. We performed the first randomized, placebo-controlled, double-blind trial to examine the safety and feasibility of the transendocardial injections of ADRCs in no-option patients with ischemic cardiomyopathy. METHODS AND RESULTS Procedural, postoperative, and follow-up safety end points were monitored up to 36 months. After baseline measurements, efficacy was assessed by echocardiography and single-photon emission computed tomography (6, 12, and 18 months), metabolic equivalents and maximal oxygen consumption (MVO2) (6 and 18 months), and cardiac magnetic resonance imaging (6 months). We enrolled 21 ADRC-treated and 6 control patients. Liposuction was well tolerated, ADRCs were successfully prepared, and transendocardial injections were feasible in all patients. No malignant arrhythmias were seen. Adverse events were similar between groups. Metabolic equivalents and MVO2 values were preserved over time in ADRC-treated patients but declined significantly in the control group. The difference in the change in MVO2 from baseline to 6 and 18 months was significantly better in ADRC-treated patients compared with controls. The ADRC-treated patients showed significant improvements in total left ventricular mass by magnetic resonance imaging and wall motion score index. Single-photon emission computed tomography results suggested a reduction in inducible ischemia in ADRC-treated patients up to 18 months. CONCLUSION Isolation and transendocardial injection of autologous ADRCs in no-option patients were safe and feasible. Our results suggest that ADRCs may preserve ventricular function, myocardial perfusion, and exercise capacity in these patients.
Circulation | 2005
Hans Fernando Rocha Dohmann; Emerson C. Perin; Christina Maeda Takiya; Guilherme V. Silva; Suzana A. Silva; André Luiz Silveira Sousa; Cláudio Tinoco Mesquita; Maria-Isabel D. Rossi; Bernardo Pascarelli; Isabella Mariana de Assis; Hélio S. Dutra; João A.R. Assad; Rodrigo V. Castello-Branco; Cantidio Drummond; Hans F. Dohmann; James T. Willerson; Radovan Borojevic
Background—Cell-based therapies for treatment of ischemic heart disease are currently under investigation. We previously reported the results of a phase I trial of transendocardial injection of autologous bone marrow mononuclear (ABMM) cells in patients with end-stage ischemic heart disease. The current report focuses on postmortem cardiac findings from one of the treated patients, who died 11 months after cell therapy. Methods and Results—Anatomicopathologic, morphometric, and immunocytochemical findings from the anterolateral ventricular wall (with cell therapy) were compared with findings from the interventricular septum (normal perfusion and no cell therapy) and from the inferoposterior ventricular wall (extensive scar tissue and no cell therapy). No signs of adverse events were found in the cell-injected areas. Capillary density was significantly higher (P<0.001) in the anterolateral wall than in the previously infarcted tissue in the posterior wall. The prominent vasculature of the anterolateral wall was associated with hyperplasia of pericytes, mural cells, and adventitia. Some of these cells had acquired cytoskeletal elements and contractile proteins (troponin, sarcomeric &agr;-actinin, actinin), as well as the morphology of cardiomyocytes, and appeared to have migrated toward adjacent bundles of cardiomyocytes. Conclusions—Eleven months after treatment, morphological and immunocytochemical analysis of the sites of ABMM cell injection showed no abnormal cell growth or tissue lesions and suggested that an active process of angiogenesis was present in both the fibrotic cicatricial tissue and the adjacent cardiac muscle. Some of the pericytes had acquired the morphology of cardiomyocytes, suggesting long-term sequential regeneration of the cardiac vascular tree and muscle.
Catheterization and Cardiovascular Interventions | 2011
Emerson C. Perin; Guilherme V. Silva; Amir Gahremanpour; John Canales; Yi Zheng; Maria da Graça Cabreira-Hansen; Farrell O. Mendelsohn; Nicolas Chronos; Rebecca Haley; James T. Willerson; Brian H. Annex
Objectives: The safety and efficacy of direct intramuscular injections of aldehyde dehydrogenase bright (ALDHbr) cells isolated from autologous bone marrow mononuclear cells (ABMMNCs) and ABMMNCs were studied in patients with critical limb ischemia (CLI) who were not eligible for percutaneous or surgical revascularization. Background: Many CLI patients are not candidates for current revascularization procedures, and amputation rates are high in these patients. Cell therapy may be a viable option for CLI patients. Methods: Safety was the primary objective and was evaluated by occurrence of adverse events. Efficacy, the secondary objective, was evaluated by assessment of Rutherford category, ankle‐brachial index (ABI), transcutaneous partial pressure of oxygen (TcPO2), quality of life, and pain. Results: ALDHbr cells and ABMMNCs were successfully administered to all patients. No therapy‐related serious adverse events occurred. Patients treated with ALDHbr cells (n = 11) showed significant improvements in Rutherford category from baseline to 12 weeks (mean, 4.09 ± 0.30 to 3.46 ± 1.04; P = 0.05) and in ABI at 6 (mean, 0.22 ± 0.19 to 0.30 ± 0.24; P = 0.02), and 12 weeks (mean, 0.36 ± 0.18; P = 0.03) compared with baseline. Patients in the ABMMNC group (n = 10) showed no significant improvements at 6 or 12 weeks in Rutherford category but did show improvement in ABI from baseline to 12 weeks (0.38 ± 0.06 to 0.52 ± 0.16; P = 0.03). No significant changes from baseline were noted in ischemic ulcer grade or TcPO2 in either group. Conclusions: Administration of autologous ALDHbr cells appears to be safe and warrants further study in patients with CLI.
Journal of Histochemistry and Cytochemistry | 2009
Deborah Vela; Guilherme V. Silva; Joao A Assad; André Luiz Silveira Sousa; Stephanie Coulter; Marlos R. Fernandes; Emerson C. Perin; James T. Willerson; L. Maximilian Buja
In this histological study, we assessed the role of mesenchymal stem cells (MSCs) in the healing process that takes place during the subacute phase of myocardial infarction in dogs. Seven days after occlusion of the left anterior descending coronary artery, adult mongrel dogs received 100 × 106 4′-6-diamidino-2-phenylindole (DAPI)-labeled allogenic bone marrow-derived MSCs by the transendocardial (TE, n = 6) and intracoronary (IC, n = 4) routes; control dogs (n = 6) received no infusion. The dogs were euthanized at 21 days after occlusion. Hearts were excised and sliced from apex to base into four transverse sections, which were divided into nine segments. Paraffin sections from each segment were stained with hematoxylin and eosin, trichrome, picrosirius red, and antibodies against several extracellular matrix components. Frozen sections were immunostained for host cardiac phenotypical markers and analyzed by epifluorescence and deconvolution fluorescence microscopy (DFM). We found less unresolved necrotic myocardium and more extracellular matrix deposition in MSC-treated dogs than in controls 2 weeks after cell delivery. By DFM, no DAPI+ MSC nuclei were observed within native cardiac cells. MSCs delivered during the subacute phase of acute myocardial infarction positively affect healing, apparently by mechanisms other than differentiation into mature native cardiac cells.
Current Opinion in Hematology | 2004
Emerson C. Perin; Guilherme V. Silva
Purpose of reviewThis review examines the knowledge that researchers have gained during the past year regarding some fundamental questions about stem cell therapy. These questions concern patient selection and safety, the optimal type of stem cells, the best route for their delivery, the fate of the transplanted cells, and the mechanism by which this therapy works. Recent findingsSo far, candidates for cardiac stem cell therapy have been limited to patients with acute myocardial infarction and chronic ischemic heart failure. Currently, bone marrow stem cells seem to be the most attractive cell type for these patients. The cells may be delivered by means of direct surgical injection, intracoronary infusion, retrograde venous infusion, and transendocardial injection. Stem cells may directly increase cardiac contractility or passively limit infarct expansion and remodeling. This therapy is generally well tolerated, but the potential for accelerated atherogenesis remains a concern. Eventually, cell therapy may be combined with gene therapy to treat ischemic myocardium. SummaryStem cell therapy for cardiac disease is a rapidly evolving field. Most of the evidence accumulated so far, including preclinical and clinical findings, confirms the potential of this novel therapy. However, most of the fundamental knowledge needed to guide the application of stem cell therapy in cardiac disease is still lacking.
Collaboration
Dive into the Guilherme V. Silva's collaboration.
José Carlos Dorsa Vieira Pontes
Federal University of Mato Grosso do Sul
View shared research outputs