Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Guillaume Andre is active.

Publication


Featured researches published by Guillaume Andre.


Nature Communications | 2010

Imaging the nanoscale organization of peptidoglycan in living Lactococcus lactis cells

Guillaume Andre; Saulius Kulakauskas; Marie-Pierre Chapot-Chartier; Benjamine Navet; Marie Deghorain; Elvis Bernard; Pascal Hols; Yves F. Dufrêne

Peptidoglycans provide bacterial cell walls with mechanical strength. The spatial organization of peptidoglycan has previously been difficult to study. Here, atomic force microscopy, together with cells carrying mutations in cell-wall polysaccharides, has allowed an in-depth study of these molecules.


Journal of Biological Chemistry | 2010

Cell Surface of Lactococcus lactis Is Covered by a Protective Polysaccharide Pellicle

Marie-Pierre Chapot-Chartier; Evgeny Vinogradov; Irina Sadovskaya; Guillaume Andre; Michel-Yves Mistou; Patrick Trieu-Cuot; Sylviane Furlan; Elena Bidnenko; Pascal Courtin; Christine Péchoux; Pascal Hols; Yves F. Dufrêne; Saulius Kulakauskas

In Gram-positive bacteria, the functional role of surface polysaccharides (PS) that are not of capsular nature remains poorly understood. Here, we report the presence of a novel cell wall PS pellicle on the surface of Lactococcus lactis. Spontaneous PS-negative mutants were selected using semi-liquid growth conditions, and all mutations were mapped in a single chromosomal locus coding for PS biosynthesis. PS molecules were shown to be composed of hexasaccharide phosphate repeating units that are distinct from other bacterial PS. Using complementary atomic force and transmission electron microscopy techniques, we showed that the PS layer forms an outer pellicle surrounding the cell. Notably, we found that this cell wall layer confers a protective barrier against host phagocytosis by murine macrophages. Altogether, our results suggest that the PS pellicle could represent a new cell envelope structural component of Gram-positive bacteria.


Infection and Immunity | 2009

Iron-regulated surface determinant protein a mediates adhesion of staphylococcus aureus to human corneocyte envelope proteins

Simon R. Clarke; Guillaume Andre; Evelyn J. Walsh; Yves F. Dufrêne; Timothy J. Foster; Simon J. Foster

ABSTRACT The ability of Staphylococcus aureus to colonize the human nares is a crucial prerequisite for disease. IsdA is a major S. aureus surface protein that is expressed during human infection and required for nasal colonization and survival on human skin. In this work, we show that IsdA binds to involucrin, loricrin, and cytokeratin K10, proteins that are present in the cornified envelope of human desquamated epithelial cells. To measure the forces and dynamics of the interaction between IsdA and loricrin (the most abundant protein of the cornified envelope), single-molecule force spectroscopy was used, demonstrating high-specificity binding. IsdA acts as a cellular adhesin to the human ligands, promoting whole-cell binding to immobilized proteins, even in the absence of other S. aureus components (as shown by heterologous expression in Lactococcus lactis). Inhibition experiments revealed the binding of the human ligands to the same IsdA region. This region was mapped to the NEAT domain of IsdA. The NEAT domain also was found to be required for S. aureus whole-cell binding to the ligands as well as to human nasal cells. Thus, IsdA is an important adhesin to human ligands, which predominate in its primary ecological niche.


ACS Chemical Biology | 2011

Fluorescence and Atomic Force Microscopy Imaging of Wall Teichoic Acids in Lactobacillus plantarum

Guillaume Andre; Marie Deghorain; Peter A. Bron; Iris I. van Swam; Michiel Kleerebezem; Pascal Hols; Yves F. Dufrêne

Although teichoic acids are major constituents of bacterial cell walls, little is known about the relationships between their spatial localization and their functional roles. Here, we used single-molecule atomic force microscopy (AFM) combined with fluorescence microscopy to image the distribution of wall teichoic acids (WTAs) in Lactobacillus plantarum, in relation with their physiological roles. Phenotype analysis of the wild-type strain and of mutant strains deficient for the synthesis of WTAs (ΔtagO) or cell wall polysaccharides (Δcps1-4) revealed that WTAs are required for proper cell elongation and cell division. Nanoscale imaging by AFM showed that strains expressing WTAs have a highly polarized surface morphology, the poles being much smoother than the side walls. AFM and fluorescence imaging with specific lectin probes demonstrated that the polarized surface structure correlates with a heterogeneous distribution of WTAs, the latter being absent from the surface of the poles. These observations indicate that the polarized distribution of WTAs in L. plantarum plays a key role in controlling cell morphogenesis (surface roughness, cell shape, elongation, and division).


Trends in Microbiology | 2010

Microbial nanoscopy: a closer look at microbial cell surfaces.

Vincent Dupres; David Alsteens; Guillaume Andre; Yves F. Dufrêne

How cell envelope constituents are spatially organised and how they interact with the environment are key questions in microbiology. Unlike other bioimaging tools, atomic force microscopy (AFM) provides information about the nanoscale surface architecture of living cells and about the localization and interactions of their individual constituents. These past years have witnessed remarkable advances in our use of the AFM molecular toolbox to observe and force probe microbial cells. Recent milestones include the real-time imaging of the nanoscale organization of cell walls, the quantification of subcellular chemical heterogeneities, the mapping and functional analysis of individual cell wall constituents and the analysis of the mechanical properties of single receptors and sensors.


Journal of Bacteriology | 2008

Detection and Localization of Single LysM-Peptidoglycan Interactions

Guillaume Andre; Kees Leenhouts; Pascal Hols; Yves F. Dufrêne

The lysin motif (LysM) is a ubiquitous protein module that binds peptidoglycan and structurally related molecules. Here, we used single-molecule force spectroscopy (SMFS) to measure and localize individual LysM-peptidoglycan interactions on both model and cellular surfaces. LysM modules of the major autolysin AcmA of Lactococcus lactis were bound to gold-coated atomic force microscopy tips, while peptidoglycan was covalently attached onto model supports. Multiple force curves recorded between the LysM tips and peptidoglycan surfaces yielded a bimodal distribution of binding forces, presumably reflecting the occurrence of one and two LysM-peptidoglycan interactions, respectively. The specificity of the measured interaction was confirmed by performing blocking experiments with free peptidoglycan. Next, the LysM tips were used to map single LysM interactions on the surfaces of L. lactis cells. Strikingly, native cells showed very poor binding, suggesting that peptidoglycan was hindered by other cell wall constituents. Consistent with this notion, treatment of the cells with trichloroacetic acid, which removes peptidoglycan-associated polymers, resulted in substantial and homogeneous binding of the LysM tip. These results provide novel insight into the binding forces of bacterial LysMs and show that SMFS is a promising tool for studying the heterologous display of proteins or peptides on bacterial surfaces.


Micron | 2012

Towards a nanoscale view of lactic acid bacteria

Prachi Tripathi; Audrey Beaussart; Guillaume Andre; Thomas Rolain; Sarah Lebeer; Jos Vanderleyden; Pascal Hols; Yves F. Dufrêne

Probiotic bacteria have a strong potential in biomedicine owing to their ability to induce various beneficial health effects. Bacterial cell surface constituents play a key role in establishing tight interactions between probiotics and their host. Yet, little is known about the spatial organization and biophysical properties of the individual molecules. In this paper, we discuss how we have been using atomic force microscopy imaging and force spectroscopy to probe the nanoscale surface properties of gram-positive lactic acid bacteria, with an emphasis on probiotic strains. Topographic imaging has enabled us to visualize bacterial cell surface structures (peptidoglycan, teichoic acids, pili, polysaccharides) under physiological conditions and with unprecedented resolution. In parallel, single-molecule force spectroscopy has been used to localize and force probe single cell surface constituents, providing novel insights into their spatial distribution and molecular elasticity.


Yeast | 2007

Towards a nanoscale view of fungal surfaces.

Etienne Dague; Yann Gilbert; Claire Verbelen; Guillaume Andre; David Alsteens; Yves F. Dufrêne

In the past years, atomic force microscopy (AFM) has offered novel possibilities for exploring the nanoscale surface properties of fungal cells. For the first time, AFM imaging enables investigators to visualize fine surface structures, such as rodlets, directly on native hydrated cells. Moreover, real‐time imaging can be used to follow cell surface dynamics during cell growth and to monitor the effect of molecules such as enzymes and drugs. In fact, AFM is much more than a microscope in that when used in the force spectroscopy mode, it allows measurement of physicochemical properties such as surface energy and surface charge, to probe the elasticity of cell wall components and macromolecules, and to analyse the force and localization of molecular recognition events. Copyright


Wiley Interdisciplinary Reviews-nanomedicine and Nanobiotechnology | 2009

Nanoscale imaging of microbial pathogens using atomic force microscopy

David Alsteens; Etienne Dague; Claire Verbelen; Guillaume Andre; Vincent Dupres; Yves F. Dufrêne

The nanoscale exploration of microbes using atomic force microscopy (AFM) is an exciting research field that has expanded rapidly in the past years. Using AFM topographic imaging, investigators can visualize the surface structure of live cells under physiological conditions and with unprecedented resolution. In doing so, the effect of drugs and chemicals on the fine cell surface architecture can be monitored. Real-time imaging offers a means to follow dynamic events such as cell growth and division. In parallel, chemical force microscopy (CFM), in which AFM tips are modified with specific functional groups, allows researchers to measure interaction forces, such as hydrophobic forces, and to resolve nanoscale chemical heterogeneities on cells, on a scale of only approximately 25 functional groups. Lastly, molecular recognition imaging using spatially resolved force spectroscopy, dynamic recognition imaging or immunogold detection, enables microscopists to localize specific receptors, such as cell adhesion proteins or antibiotic binding sites. These noninvasive nanoscale analyses provide new avenues in pathogenesis research, particularly for investigating the action mode of antimicrobial drugs, and for elucidating the molecular basis of pathogen-host interactions.


PLOS ONE | 2012

Dual Role for the O-Acetyltransferase OatA in Peptidoglycan Modification and Control of Cell Septation in Lactobacillus plantarum

Elvis Bernard; Thomas Rolain; Blandine David; Guillaume Andre; Vincent Dupres; Yves F. Dufrêne; Bernard Hallet; Marie-Pierre Chapot-Chartier; Pascal Hols

Until now, peptidoglycan O-acetyl transferases (Oat) were only described for their peptidoglycan O-acetylating activity and for their implication in the control of peptidoglycan hydrolases. In this study, we show that a Lactobacillus plantarum mutant lacking OatA is unable to uncouple cell elongation and septation. Wild-type cells showed an elongation arrest during septation while oatA mutant cells continued to elongate at a constant rate without any observable pause during the cell division process. Remarkably, this defect does not result from a default in peptidoglycan O-acetylation, since it can be rescued by wild-type OatA as well as by a catalytic mutant or a truncated variant containing only the transmembrane domain of the protein. Consistent with a potential involvement in division, OatA preferentially localizes at mid-cell before membrane invagination and remains at this position until the end of septation. Overexpression of oatA or its inactive variants induces septation-specific aberrations, including asymmetrical and dual septum formation. Overproduction of the division inhibitors, MinC or MinD, leads to cell filamentation in the wild type while curved and branched cells are observed in the oatA mutant, suggesting that the Min system acts differently on the division process in the absence of OatA. Altogether, the results suggest that OatA plays a key role in the spatio-temporal control of septation, irrespective of its catalytic activity.

Collaboration


Dive into the Guillaume Andre's collaboration.

Top Co-Authors

Avatar

Yves F. Dufrêne

Université catholique de Louvain

View shared research outputs
Top Co-Authors

Avatar

David Alsteens

Université catholique de Louvain

View shared research outputs
Top Co-Authors

Avatar

Pascal Hols

Université catholique de Louvain

View shared research outputs
Top Co-Authors

Avatar

Vincent Dupres

Université catholique de Louvain

View shared research outputs
Top Co-Authors

Avatar

Claire Verbelen

Université catholique de Louvain

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Thomas Rolain

Université catholique de Louvain

View shared research outputs
Top Co-Authors

Avatar

Marie-Pierre Chapot-Chartier

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Audrey Beaussart

Université catholique de Louvain

View shared research outputs
Top Co-Authors

Avatar

Elvis Bernard

Université catholique de Louvain

View shared research outputs
Researchain Logo
Decentralizing Knowledge