Guillaume Assié
Paris Descartes University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Guillaume Assié.
European Journal of Human Genetics | 2008
Barbara Pasini; Sarah R. McWhinney; Thalia Bei; Ludmila Matyakhina; Sotirios Stergiopoulos; Michael Muchow; Sosipatros A. Boikos; Barbara Ferrando; Karel Pacak; Guillaume Assié; Eric Baudin; Agnès Chompret; Jay W. Ellison; Jean Jacques Briere; Pierre Rustin; Anne Paule Gimenez-Roqueplo; Charis Eng; J. Aidan Carney; Constantine A. Stratakis
Gastrointestinal stromal tumors (GISTs) may be caused by germline mutations of the KIT and platelet-derived growth factor receptor-α (PDGFRA) genes and treated by Imatinib mesylate (STI571) or other protein tyrosine kinase inhibitors. However, not all GISTs harbor these genetic defects and several do not respond to STI571 suggesting that other molecular mechanisms may be implicated in GIST pathogenesis. In a subset of patients with GISTs, the lesions are associated with paragangliomas; the condition is familial and transmitted as an autosomal-dominant trait. We investigated 11 patients with the dyad of ‘paraganglioma and gastric stromal sarcoma’; in eight (from seven unrelated families), the GISTs were caused by germline mutations of the genes encoding subunits B, C, or D (the SDHB, SDHC and SDHD genes, respectively). In this report, we present the molecular effects of these mutations on these genes and the clinical information on the patients. We conclude that succinate dehydrogenase deficiency may be the cause of a subgroup of GISTs and this offers a therapeutic target for GISTs that may not respond to STI571 and its analogs.
Journal of Clinical Oncology | 2009
Aurélien de Reyniès; Guillaume Assié; David S. Rickman; Frédérique Tissier; Lionel Groussin; F. René-Corail; Bertrand Dousset; Xavier Bertagna; Eric Clauser; Jérôme Bertherat
PURPOSE Adrenocortical tumors, especially cancers, remain challenging both for their diagnosis and prognosis assessment. The aim of this article is to identify molecular predictors of malignancy and of survival. PATIENTS AND METHODS One hundred fifty-three unilateral adrenocortical tumors were studied by microarray (n = 92) or reverse transcription quantitative polymerase chain reaction (n = 148). A two-gene predictor of malignancy was built using the disease-free survival as the end point in a training cohort (n = 47), then validated in an independent validation cohort (n = 104). The best candidate genes were selected using Cox models, and the best gene combination was validated using the log-rank test. Similarly, for malignant tumors, a two-gene predictor of survival was built using the overall survival as the end point in a training cohort (n = 23), then tested in an independent validation cohort (n = 35). RESULTS Unsupervised clustering analysis discriminated robustly the malignant and benign tumors, and identified two groups of malignant tumors with very different outcome. The combined expression of DLG7 and PINK1 was the best predictor of disease-free survival (log-rank P approximately 10(-12)), could overcome the uncertainties of intermediate pathological Weiss scores, and remained significant after adjustment to the Weiss score (P < 1.3 x 10(-2)). Among the malignant tumors, the combined expression of BUB1B and PINK1 was the best predictor of overall survival (P < 2 x 10(-6)), and remained significant after adjusting for MacFarlane staging (P < .005). CONCLUSION Gene expression analysis unravels two distinct groups of adrenocortical carcinomas. The molecular predictors of malignancy and of survival are reliable and provide valuable independent information in addition to pathology and tumor staging. These original tools should provide important improvements for adrenal tumors management.
Nature Genetics | 2014
Guillaume Assié; Eric Letouzé; Martin Fassnacht; Anne Jouinot; Windy Luscap; Olivia Barreau; Hanin Omeiri; S. Rodriguez; Karine Perlemoine; F. René-Corail; Nabila Elarouci; Silviu Sbiera; Matthias Kroiss; Bruno Allolio; Jens Waldmann; Marcus Quinkler; Massimo Mannelli; Franco Mantero; Thomas G. Papathomas; Ronald R. de Krijger; Antoine Tabarin; V. Kerlan; Eric Baudin; Frédérique Tissier; Bertrand Dousset; Lionel Groussin; Laurence Amar; Eric Clauser; Xavier Bertagna; Bruno Ragazzon
Adrenocortical carcinomas (ACCs) are aggressive cancers originating in the cortex of the adrenal gland. Despite overall poor prognosis, ACC outcome is heterogeneous. We performed exome sequencing and SNP array analysis of 45 ACCs and identified recurrent alterations in known driver genes (CTNNB1, TP53, CDKN2A, RB1 and MEN1) and in genes not previously reported in ACC (ZNRF3, DAXX, TERT and MED12), which we validated in an independent cohort of 77 ACCs. ZNRF3, encoding a cell surface E3 ubiquitin ligase, was the most frequently altered gene (21%) and is a potential new tumor suppressor gene related to the β-catenin pathway. Our integrated genomic analyses further identified two distinct molecular subgroups with opposite outcome. The C1A group of ACCs with poor outcome displayed numerous mutations and DNA methylation alterations, whereas the C1B group of ACCs with good prognosis displayed specific deregulation of two microRNA clusters. Thus, aggressive and indolent ACCs correspond to two distinct molecular entities driven by different oncogenic alterations.
The New England Journal of Medicine | 2014
Felix Beuschlein; Martin Fassnacht; Guillaume Assié; Davide Calebiro; Constantine A. Stratakis; Andrea Osswald; Cristina L. Ronchi; Thomas Wieland; Silviu Sbiera; Fabio R. Faucz; Katrin Schaak; Anett Schmittfull; Thomas Schwarzmayr; Olivia Barreau; Delphine Vezzosi; Marthe Rizk-Rabin; Ulrike Zabel; Eva Szarek; Paraskevi Salpea; Antonella Forlino; Annalisa Vetro; Orsetta Zuffardi; Caroline Kisker; Susanne Diener; Thomas Meitinger; Martin J. Lohse; Martin Reincke; Jérôme Bertherat; Tim M. Strom; Bruno Allolio
BACKGROUND Corticotropin-independent Cushings syndrome is caused by tumors or hyperplasia of the adrenal cortex. The molecular pathogenesis of cortisol-producing adrenal adenomas is not well understood. METHODS We performed exome sequencing of tumor-tissue specimens from 10 patients with cortisol-producing adrenal adenomas and evaluated recurrent mutations in candidate genes in an additional 171 patients with adrenocortical tumors. We also performed genomewide copy-number analysis in 35 patients with cortisol-secreting bilateral adrenal hyperplasias. We studied the effects of these genetic defects both clinically and in vitro. RESULTS Exome sequencing revealed somatic mutations in PRKACA, which encodes the catalytic subunit of cyclic AMP-dependent protein kinase (protein kinase A [PKA]), in 8 of 10 adenomas (c.617A→C in 7 and c.595_596insCAC in 1). Overall, PRKACA somatic mutations were identified in 22 of 59 unilateral adenomas (37%) from patients with overt Cushings syndrome; these mutations were not detectable in 40 patients with subclinical hypercortisolism or in 82 patients with other adrenal tumors. Among 35 patients with cortisol-producing hyperplasias, 5 (including 2 first-degree relatives) carried a germline copy-number gain (duplication) of the genomic region on chromosome 19 that includes PRKACA. In vitro studies showed impaired inhibition of both PKA catalytic subunit mutants by the PKA regulatory subunit, whereas cells from patients with germline chromosomal gains showed increased protein levels of the PKA catalytic subunit; in both instances, basal PKA activity was increased. CONCLUSIONS Genetic alterations of the catalytic subunit of PKA were found to be associated with human disease. Germline duplications of this gene resulted in bilateral adrenal hyperplasias, whereas somatic PRKACA mutations resulted in unilateral cortisol-producing adrenal adenomas. (Funded by the European Commission Seventh Framework Program and others.).
The New England Journal of Medicine | 2013
Guillaume Assié; Rossella Libé; Stéphanie Espiard; Marthe Rizk-Rabin; Anne Guimier; Windy Luscap; Olivia Barreau; Lucile Lefèvre; Mathilde Sibony; Laurence Guignat; S. Rodriguez; Karine Perlemoine; F. René-Corail; Franck Letourneur; Bilal Trabulsi; Alix Poussier; Nathalie Chabbert-Buffet; Françoise Borson-Chazot; Lionel Groussin; Xavier Bertagna; Constantine A. Stratakis; Bruno Ragazzon; Jérôme Bertherat; Abstr Act
BACKGROUND Corticotropin-independent macronodular adrenal hyperplasia may be an incidental finding or it may be identified during evaluation for Cushings syndrome. Reports of familial cases and the involvement of both adrenal glands suggest a genetic origin of this condition. METHODS We genotyped blood and tumor DNA obtained from 33 patients with corticotropin-independent macronodular adrenal hyperplasia (12 men and 21 women who were 30 to 73 years of age), using single-nucleotide polymorphism arrays, microsatellite markers, and whole-genome and Sanger sequencing. The effects of armadillo repeat containing 5 (ARMC5) inactivation and overexpression were tested in cell-culture models. RESULTS The most frequent somatic chromosome alteration was loss of heterozygosity at 16p (in 8 of 33 patients for whom data were available [24%]). The most frequent mutation identified by means of whole-genome sequencing was in ARMC5, located at 16p11.2. ARMC5 mutations were detected in tumors obtained from 18 of 33 patients (55%). In all cases, both alleles of ARMC5 carried mutations: one germline and the other somatic. In 4 patients with a germline ARMC5 mutation, different nodules from the affected adrenals harbored different secondary ARMC5 alterations. Transcriptome-based classification of corticotropin-independent macronodular adrenal hyperplasia indicated that ARMC5 mutations influenced gene expression, since all cases with mutations clustered together. ARMC5 inactivation decreased steroidogenesis in vitro, and its overexpression altered cell survival. CONCLUSIONS Some cases of corticotropin-independent macronodular adrenal hyperplasia appear to be genetic, most often with inactivating mutations of ARMC5, a putative tumor-suppressor gene. Genetic testing for this condition, which often has a long and insidious prediagnostic course, might result in earlier identification and better management. (Funded by Agence Nationale de la Recherche and others.).
Cancer Cell | 2016
Siyuan Zheng; Andrew D. Cherniack; Ninad Dewal; Richard A. Moffitt; Ludmila Danilova; Bradley A. Murray; Antonio M. Lerario; Tobias Else; Theo Knijnenburg; Giovanni Ciriello; Seungchan Kim; Guillaume Assié; Olena Morozova; Rehan Akbani; Juliann Shih; Katherine A. Hoadley; Toni K. Choueiri; Jens Waldmann; Ozgur Mete; Robertson Ag; Hsin-Ta Wu; Benjamin J. Raphael; Shao L; Matthew Meyerson; Michael J. Demeure; Felix Beuschlein; Anthony J. Gill; Stan B. Sidhu; Madson Q. Almeida; Maria Candida Barisson Villares Fragoso
We describe a comprehensive genomic characterization of adrenocortical carcinoma (ACC). Using this dataset, we expand the catalogue of known ACC driver genes to include PRKAR1A, RPL22, TERF2, CCNE1, and NF1. Genome wide DNA copy-number analysis revealed frequent occurrence of massive DNA loss followed by whole-genome doubling (WGD), which was associated with aggressive clinical course, suggesting WGD is a hallmark of disease progression. Corroborating this hypothesis were increased TERT expression, decreased telomere length, and activation of cell-cycle programs. Integrated subtype analysis identified three ACC subtypes with distinct clinical outcome and molecular alterations which could be captured by a 68-CpG probe DNA-methylation signature, proposing a strategy for clinical stratification of patients based on molecular markers.
Cancer Research | 2010
Bruno Ragazzon; Rossella Libé; Sébastien Gaujoux; Guillaume Assié; Amato Fratticci; Pierre Launay; Eric Clauser; Xavier Bertagna; Frédérique Tissier; Aurélien de Reyniès; Jérôme Bertherat
Adrenocortical carcinoma (ACC) is a rare disease with an overall poor but heterogeneous prognosis. This heterogeneity could reflect different mechanisms of tumor development. Gene expression profiling by transcriptome analysis led to ACC being divided into two groups of tumors with very different outcomes. Somatic inactivating mutations of the tumor suppressor gene TP53 and activating mutations of the proto-oncogene β-catenin (CTNNB1) are the most frequent mutations identified in ACC. This study investigates the correlation between p53 and β-catenin alterations and the molecular classification of ACC by transcriptome analysis of 51 adult sporadic ACCs. All TP53 and CTNNB1 mutations seemed to be mutually exclusive and were observed only in the poor-outcome ACC group. Most of the abnormal p53 and β-catenin immunostaining was also found in this group. Fifty-two percent of the poor-outcome ACC group had TP53 or CTNNB1 mutations and 60% had abnormal p53 or β-catenin immunostaining. Unsupervised clustering transcriptome analysis of this poor-outcome group revealed three different subgroups, two of them being associated with p53 or β-catenin alterations, respectively. Analysis of p53 and β-catenin target gene expressions in each cluster confirmed a profound and anticipated effect on tumor biology, with distinct profiles logically associated with the respective pathway alterations. The third group had no p53 or β-catenin alteration, suggesting other unidentified molecular defects. This study shows the important respective roles of p53 and β-catenin in ACC development, delineating subgroups of ACC with different tumorigenesis and outcomes.
Breast Cancer Research and Treatment | 2010
Nic Waddell; Jeremy Arnold; Sibylle Cocciardi; Leonard Da Silva; Anna Marsh; Joan Riley; Cameron N. Johnstone; Mohammed S. Orloff; Guillaume Assié; Charis Eng; Lynne Reid; Patricia Keith; Max Yan; Stephen B. Fox; Peter Devilee; Andrew K. Godwin; Frans B. L. Hogervorst; Fergus J. Couch; kConFab Investigators; Sean M. Grimmond; James M. Flanagan; Kum Kum Khanna; Peter T. Simpson; Sunil R. Lakhani; Georgia Chenevix-Trench
Extensive expression profiling studies have shown that sporadic breast cancer is composed of five clinically relevant molecular subtypes. However, although BRCA1-related tumours are known to be predominantly basal-like, there are few published data on other classes of familial breast tumours. We analysed a cohort of 75 BRCA1, BRCA2 and non-BRCA1/2 breast tumours by gene expression profiling and found that 74% BRCA1 tumours were basal-like, 73% of BRCA2 tumours were luminal A or B, and 52% non-BRCA1/2 tumours were luminal A. Thirty-four tumours were also analysed by single nucleotide polymorphism–comparative genomic hybridization (SNP-CGH) arrays. Copy number data could predict whether a tumour was basal-like or luminal with high accuracy, but could not predict its mutation class. Basal-like BRCA1 and basal-like non-BRCA1 tumours were very similar, and contained the highest number of chromosome aberrations. We identified regions of frequent gain containing potential driver genes in the basal (8q and 12p) and luminal A tumours (1q and 17q). Regions of homozygous loss associated with decreased expression of potential tumour suppressor genes were also detected, including in basal tumours (5q and 9p), and basal and luminal tumours (10q). This study highlights the heterogeneity of familial tumours and the clinical consequences for treatment and prognosis.
Human Molecular Genetics | 2014
Annabel Berthon; Coralie Drelon; Bruno Ragazzon; Sheerazed Boulkroun; Frédérique Tissier; Laurence Amar; Benoit Samson-Couterie; Maria Christina Zennaro; Pierre-François Plouin; Seham Skah; Michelina Plateroti; H. Lefebvre; Isabelle Sahut-Barnola; Marie Batisse-Lignier; Guillaume Assié; Anne-Marie Lefrançois-Martinez; Jérôme Bertherat; Antoine Martinez; Pierre Val
Primary aldosteronism (PA) is the main cause of secondary hypertension, resulting from adrenal aldosterone-producing adenomas (APA) or bilateral hyperplasia. Here, we show that constitutive activation of WNT/β-catenin signalling is the most frequent molecular alteration found in 70% of APA. We provide evidence that decreased expression of the WNT inhibitor SFRP2 may be contributing to deregulated WNT signalling and APA development in patients. This is supported by the demonstration that mice with genetic ablation of Sfrp2 have increased aldosterone production and ectopic differentiation of zona glomerulosa cells. We further show that β-catenin plays an essential role in the control of basal and Angiotensin II-induced aldosterone secretion, by activating AT1R, CYP21 and CYP11B2 transcription. This relies on both LEF/TCF-dependent activation of AT1R and CYP21 regulatory regions and indirect activation of CYP21 and CYP11B2 promoters, through increased expression of the nuclear receptors NURR1 and NUR77. Altogether, these data show that aberrant WNT/β-catenin activation is associated with APA development and suggest that WNT pathway may be a good therapeutic target in PA.
Endocrine-related Cancer | 2014
Florian Haller; Evgeny A. Moskalev; Fabio R. Faucz; Sarah Barthelmeß; Stefan Wiemann; Matthias Bieg; Guillaume Assié; Jérôme Bertherat; Inga-Marie Schaefer; Claudia Otto; Eleanor Rattenberry; Eamonn R. Maher; Philipp Ströbel; Martin Werner; J. Aidan Carney; Arndt Hartmann; Constantine A. Stratakis; Abbas Agaimy
Carney triad (CT) is a rare condition with synchronous or metachronous occurrence of gastrointestinal stromal tumors (GISTs), paragangliomas (PGLs), and pulmonary chondromas in a patient. In contrast to Carney-Stratakis syndrome (CSS) and familial PGL syndromes, no germline or somatic mutations in the succinate dehydrogenase (SDH) complex subunits A, B, C, or D have been found in most tumors and/or patients with CT. Nonetheless, the tumors arising among patients with CT, CSS, or familial PGL share a similar morphology with loss of the SDHB subunit on the protein level. For the current study, we employed massive parallel bisulfite sequencing to evaluate DNA methylation patterns in CpG islands in proximity to the gene loci of all four SDH subunits. For the first time, we report on a recurrent aberrant dense DNA methylation at the gene locus of SDHC in tumors of patients with CT, which was not present in tumors of patients with CSS or PGL, or in sporadic GISTs with KIT mutations. This DNA methylation pattern was correlated to a reduced mRNA expression of SDHC, and concurrent loss of the SDHC subunit on the protein level. Collectively, these data suggest epigenetic inactivation of the SDHC gene locus with functional impairment of the SDH complex as a plausible alternate mechanism of tumorigenesis in CT.