Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Guillaume Auzias is active.

Publication


Featured researches published by Guillaume Auzias.


IEEE Transactions on Medical Imaging | 2011

Diffeomorphic Brain Registration Under Exhaustive Sulcal Constraints

Guillaume Auzias; Olivier Colliot; Joan Alexis Glaunès; Matthieu Perrot; Jean-François Mangin; Alain Trouvé; Sylvain Baillet

The alignment and normalization of individual brain structures is a prerequisite for group-level analyses of structural and functional neuroimaging data. The techniques currently available are either based on volume and/or surface attributes, with limited insight regarding the consistent alignment of anatomical landmarks across individuals. This article details a global, geometric approach that performs the alignment of the exhaustive sulcal imprints (cortical folding patterns) across individuals. This DIffeomorphic Sulcal-based COrtical (DISCO) technique proceeds to the automatic extraction, identification and simplification of sulcal features from T1-weighted Magnetic Resonance Image (MRI) series. These features are then used as control measures for fully-3-D diffeomorphic deformations. Quantitative and qualitative evaluations show that DISCO correctly aligns the sulcal folds and gray and white matter volumes across individuals. The comparison with a recent, iconic diffeomorphic approach (DARTEL) highlights how the absence of explicit cortical landmarks may lead to the misalignment of cortical sulci. We also feature DISCO in the automatic design of an empirical sulcal template from group data. We also demonstrate how DISCO can efficiently be combined with an image-based deformation (DARTEL) to further improve the consistency and accuracy of alignment performances. Finally, we illustrate how the optimized alignment of cortical folds across subjects improves sensitivity in the detection of functional activations in a group-level analysis of neuroimaging data.


IEEE Transactions on Medical Imaging | 2013

Model-Driven Harmonic Parameterization of the Cortical Surface: HIP-HOP

Guillaume Auzias; Julien Lefèvre; A. Le Troter; Clara Fischer; Matthieu Perrot; Jean Régis; Olivier Coulon

In the context of inter subject brain surface matching, we present a parameterization of the cortical surface constrained by a model of cortical organization. The parameterization is defined via an harmonic mapping of each hemisphere surface to a rectangular planar domain that integrates a representation of the model. As opposed to previous landmark-based registration methods we do not match folds between individuals but instead optimize the fit between cortical sulci and specific iso-coordinate axis in the model. This strategy overcomes some limitation to sulcus-based registration techniques such as topological variability in sulcal landmarks across subjects. Experiments on 62 subjects with manually traced sulci are presented and compared with the result of the Freesurfer software. The evaluation involves a measure of dispersion of sulci with both angular and area distortions. We show that the model-based strategy can lead to a natural, efficient and very fast (less than 5 min per hemisphere) method for defining inter subjects correspondences. We discuss how this approach also reduces the problems inherent to anatomically defined landmarks and open the way to the investigation of cortical organization through the notion of orientation and alignment of structures across the cortex.


NeuroImage: Clinical | 2014

Atypical sulcal anatomy in young children with autism spectrum disorder.

Guillaume Auzias; M. Viellard; Sylvain Takerkart; Nathalie Villeneuve; F. Poinso; D. Da Fonseca; Nadine Girard; Christine Deruelle

Autism spectrum disorder is associated with an altered early brain development. However, the specific cortical structure abnormalities underlying this disorder remain largely unknown. Nonetheless, atypical cortical folding provides lingering evidence of early disruptions in neurodevelopmental processes and identifying changes in the geometry of cortical sulci is of primary interest for characterizing these structural abnormalities in autism and their evolution over the first stages of brain development. Here, we applied state-of-the-art sulcus-based morphometry methods to a large highly-selective cohort of 73 young male children of age spanning from 18 to 108 months. Moreover, such large cohort was selected through extensive behavioral assessments and stringent inclusion criteria for the group of 59 children with autism. After manual labeling of 59 different sulci in each hemisphere, we computed multiple shape descriptors for each single sulcus element, hereby separating the folding measurement into distinct factors such as the length and depth of the sulcus. We demonstrated that the central, intraparietal and frontal medial sulci showed a significant and consistent pattern of abnormalities across our different geometrical indices. We also found that autistic and control children exhibited strikingly different relationships between age and structural changes in brain morphology. Lastly, the different measures of sulcus shapes were correlated with the CARS and ADOS scores that are specific to the autistic pathology and indices of symptom severity. Inherently, these structural abnormalities are confined to regions that are functionally relevant with respect to cognitive disorders in ASD. In contrast to those previously reported in adults, it is very unlikely that these abnormalities originate from general compensatory mechanisms unrelated to the primary pathology. Rather, they most probably reflect an early disruption on developmental trajectory that could be part of the primary pathology.


NeuroImage | 2015

Deep sulcal landmarks: Algorithmic and conceptual improvements in the definition and extraction of sulcal pits

Guillaume Auzias; Lucile Brun; Christine Deruelle; Olivier Coulon

Recent interest has been growing concerning points of maximum depth within folds, the sulcal pits, that can be used as reliable cortical landmarks. These remarkable points on the cortical surface are defined algorithmically as the outcome of an automatic extraction procedure. The influence of several crucial parameters of the reference technique (Im et al., 2010) has not been evaluated extensively, and no optimization procedure has been proposed so far. Designing an appropriate optimization framework for these parameters is mandatory to guarantee the reproducibility of results across studies and to ensure the feasibility of sulcal pit extraction and analysis on large cohorts. In this work, we propose a framework specifically dedicated to the optimization of the parameters of the method. This optimization framework relies on new measures for better quantifying the reproducibility of the number of sulcal pits per region across individuals, in line with the assumptions of one-to-one correspondence of sulcal roots across individuals which is an explicit aspect of the sulcal roots model (Régis et al., 2005). Our procedure benefits from a combination of improvements, including the use of a convenient sulcal depth estimation and is methodologically sound. Our experiments on two different groups of individuals, with a total of 137 subjects, show an increased reliability across subjects in deeper sulcal pits, as compared to the previous approach, and cover the entire cortical surface, including shallower and more variable folds that were not considered before. The effectiveness of our method ensures the feasibility of a systematic study of sulcal pits on large cohorts. On top of these methodological advances, we quantify the relationship between the reproducibility of the number of sulcal pits per region across individuals and their respective depth and demonstrate the relatively high reproducibility of several pits corresponding to shallower folds. Finally, we report new results regarding the local pit asymmetry, providing evidence that the algorithmic and conceptual approach defended here may contribute to better understanding of the key role of sulcal pits in neuroanatomy.


NeuroImage | 2012

Automatic sulcal line extraction on cortical surfaces using geodesic path density maps.

A. Le Troter; Guillaume Auzias; Olivier Coulon

We present here a method that is designed to automatically extract sulcal lines on the mesh of any cortical surface. The method is based on the definition of a new function, the Geodesic Path Density Map (GPDM), within each sulcal basin (i.e. regions with a negative mean curvature). GPDM indicates at each vertex the likelihood that a shortest path between any two points of the basins boundary goes through that vertex. If the distance used to compute shortest path is anisotropic and constrained by a geometric information such as the depth, the GPDM indicates the likelihood that a vertex belongs to the sulcal line in the basin. An automatic GPDM adaptive thresholding procedure is proposed and sulcal lines are then defined. The process has been validated on a set of 25 subjects by comparing results to the manual segmentation from an expert and showed an average error below 2mm. It is also compared to our previous reference method in the context of inter-subject cortical surface registration and shows an significant improvement in performance.


Human Brain Mapping | 2016

MarsAtlas: A cortical parcellation atlas for functional mapping

Guillaume Auzias; Olivier Coulon; Andrea Brovelli

An open question in neuroimaging is how to develop anatomical brain atlases for the analysis of functional data. Here, we present a cortical parcellation model based on macroanatomical information and test its validity on visuomotor‐related cortical functional networks. The parcellation model is based on a recently developed cortical parameterization method (Auzias et al., [2013]: IEEE Trans Med Imaging 32:873–887), called HIP‐HOP. This method exploits a set of primary and secondary sulci to create an orthogonal coordinate system on the cortical surface. A natural parcellation scheme arises from the axes of the HIP‐HOP model running along the fundus of selected sulci. The resulting parcellation scheme, called MarsAtlas, complies with dorsoventral/rostrocaudal direction fields and allows inter‐subject matching. To test it for functional mapping, we analyzed a MEG dataset collected from human participants performing an arbitrary visuomotor mapping task. Single‐trial high‐gamma activity, HGA (60–120 Hz), was estimated using spectral analysis and beamforming techniques at cortical areas arising from a Talairach atlas (i.e., Brodmann areas) and MarsAtlas. Using both atlases, we confirmed that visuomotor associations involve an increase in HGA over the sensorimotor and fronto‐parietal network, in addition to medial prefrontal areas. However, MarsAtlas provided: (1) crucial functional information along both the dorsolateral and rostrocaudal direction; (2) an increase in statistical significance. To conclude, our results suggest that the MarsAtlas is a valid anatomical atlas for functional mapping, and represents a potential anatomical framework for integration of functional data arising from multiple techniques such as MEG, intracranial EEG and fMRI. Hum Brain Mapp 37:1573‐1592, 2016.


PLOS ONE | 2014

Graph-Based Inter-Subject Pattern Analysis of fMRI Data

Sylvain Takerkart; Guillaume Auzias; Bertrand Thirion; Liva Ralaivola

In brain imaging, solving learning problems in multi-subjects settings is difficult because of the differences that exist across individuals. Here we introduce a novel classification framework based on group-invariant graphical representations, allowing to overcome the inter-subject variability present in functional magnetic resonance imaging (fMRI) data and to perform multivariate pattern analysis across subjects. Our contribution is twofold: first, we propose an unsupervised representation learning scheme that encodes all relevant characteristics of distributed fMRI patterns into attributed graphs; second, we introduce a custom-designed graph kernel that exploits all these characteristics and makes it possible to perform supervised learning (here, classification) directly in graph space. The well-foundedness of our technique and the robustness of the performance to the parameter setting are demonstrated through inter-subject classification experiments conducted on both artificial data and a real fMRI experiment aimed at characterizing local cortical representations. Our results show that our framework produces accurate inter-subject predictions and that it outperforms a wide range of state-of-the-art vector- and parcel-based classification methods. Moreover, the genericity of our method makes it is easily adaptable to a wide range of potential applications. The dataset used in this study and an implementation of our framework are available at http://dx.doi.org/10.6084/m9.figshare.1086317.


Third International Workshop Machine Learning in Medical Imaging - MLMI 2012 (Held in Conjunction with MICCAI 2012) | 2012

Graph-based inter-subject classification of local fMRI patterns

Sylvain Takerkart; Guillaume Auzias; Bertrand Thirion; Daniele Schön; Liva Ralaivola

Classification of medical images in multi-subjects settings is a difficult challenge due to the variability that exists between individuals. Here we introduce a new graph-based framework designed to deal with inter-subject functional variability present in fMRI data. A graphical model is constructed to encode the functional, geometric and structural properties of local activation patterns. We then design a specific graph kernel, allowing to conduct SVM classification in graph space. Experiments conducted in an inter-subject classification task of patterns recorded in the auditory cortex show that it is the only approach to perform above chance level, among a wide range of tested methods.


The Journal of Neuroscience | 2017

Dynamic Reconfiguration of Visuomotor-Related Functional Connectivity Networks

Andrea Brovelli; Jean-Michel Badier; Francesca Bonini; Fabrice Bartolomei; Olivier Coulon; Guillaume Auzias

Cognitive functions arise from the coordination of large-scale brain networks. However, the principles governing interareal functional connectivity dynamics (FCD) remain elusive. Here, we tested the hypothesis that human executive functions arise from the dynamic interplay of multiple networks. To do so, we investigated FCD mediating a key executing function, known as arbitrary visuomotor mapping, using brain connectivity analyses of high-gamma activity recorded using MEG and intracranial EEG. Visuomotor mapping was found to arise from the dynamic interplay of three partly overlapping cortico-cortical and cortico-subcortical functional connectivity (FC) networks. First, visual and parietal regions coordinated with sensorimotor and premotor areas. Second, the dorsal frontoparietal circuit together with the sensorimotor and associative frontostriatal networks took the lead. Finally, cortico-cortical interhemispheric coordination among bilateral sensorimotor regions coupled with the left frontoparietal network and visual areas. We suggest that these networks reflect the processing of visual information, the emergence of visuomotor plans, and the processing of somatosensory reafference or actions outcomes, respectively. We thus demonstrated that visuomotor integration resides in the dynamic reconfiguration of multiple cortico-cortical and cortico-subcortical FC networks. More generally, we showed that visuomotor-related FC is nonstationary and displays switching dynamics and areal flexibility over timescales relevant for task performance. In addition, visuomotor-related FC is characterized by sparse connectivity with density <10%. To conclude, our results elucidate the relation between dynamic network reconfiguration and executive functions over short timescales and provide a candidate entry point toward a better understanding of cognitive architectures. SIGNIFICANCE STATEMENT Executive functions are supported by the dynamic coordination of neural activity over large-scale networks. The properties of large-scale brain coordination processes, however, remain unclear. Using tools combining MEG and intracranial EEG with brain connectivity analyses, we provide evidence that visuomotor behaviors, a hallmark of executive functions, are mediated by the interplay of multiple and spatially overlapping subnetworks. These subnetworks span visuomotor-related areas, the cortico-cortical and cortico-subcortical interactions of which evolve rapidly and reconfigure over timescales relevant for behavior. Visuomotor-related functional connectivity dynamics are characterized by sparse connections, nonstationarity, switching dynamics, and areal flexibility. We suggest that these properties represent key aspects of large-scale functional networks and cognitive architectures.


American Journal of Psychiatry | 2017

Cortical and Subcortical Brain Morphometry Differences Between Patients With Autism Spectrum Disorder and Healthy Individuals Across the Lifespan: Results From the ENIGMA ASD Working Group

Daan van Rooij; Evdokia Anagnostou; Celso Arango; Guillaume Auzias; Marlene Behrmann; Geraldo F. Busatto; Sara Calderoni; Eileen Daly; Christine Deruelle; Adriana Di Martino; Ilan Dinstein; Fabio Luis Souza Duran; Sarah Durston; Christine Ecker; Damien A. Fair; Jennifer Fedor; Jackie Fitzgerald; Christine M. Freitag; Louise Gallagher; Ilaria Gori; Liesbeth Hoekstra; Neda Jahanshad; Maria Jalbrzikowski; Joost Janssen; Jason Lerch; Beatriz Luna; Mauricio Moller Martinho; Jane McGrath; Filippo Muratori; Clodagh Murphy

OBJECTIVEnNeuroimaging studies show structural differences in both cortical and subcortical brain regions in children and adults with autism spectrum disorder (ASD) compared with healthy subjects. Findings are inconsistent, however, and it is unclear how differences develop across the lifespan. The authors investigated brain morphometry differences between individuals with ASD and healthy subjects, cross-sectionally across the lifespan, in a large multinational sample from the Enhancing Neuroimaging Genetics Through Meta-Analysis (ENIGMA) ASD working group.nnnMETHODnThe sample comprised 1,571 patients with ASD and 1,651 healthy control subjects (age range, 2-64 years) from 49 participating sites. MRI scans were preprocessed at individual sites with a harmonized protocol based on a validated automated-segmentation software program. Mega-analyses were used to test for case-control differences in subcortical volumes, cortical thickness, and surface area. Development of brain morphometry over the lifespan was modeled using a fractional polynomial approach.nnnRESULTSnThe case-control mega-analysis demonstrated that ASD was associated with smaller subcortical volumes of the pallidum, putamen, amygdala, and nucleus accumbens (effect sizes [Cohens d], 0.13 to -0.13), as well as increased cortical thickness in the frontal cortex and decreased thickness in the temporal cortex (effect sizes, -0.21 to 0.20). Analyses of age effects indicate that the development of cortical thickness is altered in ASD, with the largest differences occurring around adolescence. No age-by-ASD interactions were observed in the subcortical partitions.nnnCONCLUSIONSnThe ENIGMA ASD working group provides the largest study of brain morphometry differences in ASD to date, using a well-established, validated, publicly available analysis pipeline. ASD patients showed altered morphometry in the cognitive and affective parts of the striatum, frontal cortex, and temporal cortex. Complex developmental trajectories were observed for the different regions, with a developmental peak around adolescence. These findings suggest an interplay in the abnormal development of the striatal, frontal, and temporal regions in ASD across the lifespan.

Collaboration


Dive into the Guillaume Auzias's collaboration.

Top Co-Authors

Avatar

Olivier Coulon

Aix-Marseille University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lucile Brun

Aix-Marseille University

View shared research outputs
Top Co-Authors

Avatar

Nadine Girard

Aix-Marseille University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Neda Jahanshad

University of Southern California

View shared research outputs
Researchain Logo
Decentralizing Knowledge