Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Guillaume Bonnier is active.

Publication


Featured researches published by Guillaume Bonnier.


Multiple Sclerosis Journal | 2016

Serum neurofilament light chain in early relapsing remitting MS is increased and correlates with CSF levels and with MRI measures of disease severity.

Jens Kuhle; Christian Barro; Giulio Disanto; Amandine Mathias; Charlotte Soneson; Guillaume Bonnier; Özguer Yaldizli; Axel Regeniter; Tobias Derfuss; Mathieu Canales; Myriam Schluep; Renaud Du Pasquier; Gunnar Krueger; Cristina Granziera

Background/objectives: Neurofilament light chain (NfL) levels in the cerebrospinal fluid (CSF) of multiple sclerosis (MS) patients correlate with the degree of neuronal injury. To date, little is known about NfL concentrations in the serum of relapsing remitting multiple sclerosis (RRMS) patients and their relationship with CSF levels and magnetic resonance imaging (MRI) measures of disease severity. We aimed to validate the quantification of NfL in serum samples of RRMS, as a biofluid source easily accessible for longitudinal studies. Methods: A total of 31 RRMS patients underwent CSF and serum sampling. After a median time of 3.6 years, 19 of these RRMS patients, 10 newly recruited RRMS patients and 18 healthy controls had a 3T MRI and serum sampling. NfL concentrations were determined by electrochemiluminescence immunoassay. Results: NfL levels in serum were highly correlated to levels in CSF (r = 0.62, p = 0.0002). Concentrations in serum were higher in patients than in controls at baseline (p = 0.004) and follow-up (p = 0.0009) and did not change over time (p = 0.56). Serum NfL levels correlated with white matter (WM) lesion volume (r = 0.68, p < 0.0001), mean T1 (r = 0.40, p = 0.034) and T2* relaxation time (r = 0.49, p = 0.007) and with magnetization transfer ratio in normal appearing WM (r = −0.41, p = 0.029). Conclusion: CSF and serum NfL levels were highly correlated, and serum concentrations were increased in RRMS. Serum NfL levels correlated with MRI markers of WM disease severity. Our findings further support longitudinal studies of serum NfL as a potential biomarker of on-going disease progression and as a potential surrogate to quantify effects of neuroprotective drugs in clinical trials.


Annals of clinical and translational neurology | 2014

Advanced MRI unravels the nature of tissue alterations in early multiple sclerosis

Guillaume Bonnier; Alexis Roche; David Romascano; Samanta Simioni; Djalel-Eddine Meskaldji; David Rotzinger; Ying-Chia Lin; Gloria Menegaz; Myriam Schluep; Renaud Du Pasquier; Tilman Johannes Sumpf; Jens Frahm; Jean-Philippe Thiran; Gunnar Krueger; Cristina Granziera

In patients with multiple sclerosis (MS), conventional magnetic resonance imaging (MRI) provides only limited insights into the nature of brain damage with modest clinic‐radiological correlation. In this study, we applied recent advances in MRI techniques to study brain microstructural alterations in early relapsing‐remitting MS (RRMS) patients with minor deficits. Further, we investigated the potential use of advanced MRI to predict functional performances in these patients.


Journal of Magnetic Resonance Imaging | 2016

Automated detection of white matter and cortical lesions in early stages of multiple sclerosis.

Mário João Fartaria; Guillaume Bonnier; Alexis Roche; Tobias Kober; Reto Meuli; David Rotzinger; Richard S. J. Frackowiak; Myriam Schluep; Renaud Du Pasquier; Jean-Philippe Thiran; Gunnar Krueger; Meritxell Bach Cuadra; Cristina Granziera

To develop a method to automatically detect multiple sclerosis (MS) lesions, located both in white matter (WM) and in the cortex, in patients with low disability and early disease stage.


Human Brain Mapping | 2015

Multicontrast connectometry: A new tool to assess cerebellum alterations in early relapsing-remitting multiple sclerosis.

David Romascano; Djalel-Eddine Meskaldji; Guillaume Bonnier; Samanta Simioni; David Rotzinger; Ying-Chia Lin; Gloria Menegaz; Alexis Roche; Myriam Schluep; Renaud Du Pasquier; Jonas Richiardi; Dimitri Van De Ville; Alessandro Daducci; Tilman Johannes Sumpf; Jens Fraham; Jean-Philippe Thiran; Gunnar Krueger; Cristina Granziera

Background: Cerebellar pathology occurs in late multiple sclerosis (MS) but little is known about cerebellar changes during early disease stages. In this study, we propose a new multicontrast “connectometry” approach to assess the structural and functional integrity of cerebellar networks and connectivity in early MS. Methods: We used diffusion spectrum and resting‐state functional MRI (rs‐fMRI) to establish the structural and functional cerebellar connectomes in 28 early relapsing‐remitting MS patients and 16 healthy controls (HC). We performed multicontrast “connectometry” by quantifying multiple MRI parameters along the structural tracts (generalized fractional anisotropy‐GFA, T1/T2 relaxation times and magnetization transfer ratio) and functional connectivity measures. Subsequently, we assessed multivariate differences in local connections and network properties between MS and HC subjects; finally, we correlated detected alterations with lesion load, disease duration, and clinical scores. Results: In MS patients, a subset of structural connections showed quantitative MRI changes suggesting loss of axonal microstructure and integrity (increased T1 and decreased GFA, P < 0.05). These alterations highly correlated with motor, memory and attention in patients, but were independent of cerebellar lesion load and disease duration. Neither network organization nor rs‐fMRI abnormalities were observed at this early stage. Conclusion: Multicontrast cerebellar connectometry revealed subtle cerebellar alterations in MS patients, which were independent of conventional disease markers and highly correlated with patient function. Future work should assess the prognostic value of the observed damage. Hum Brain Mapp 36:1609–1619, 2015.


NeuroImage: Clinical | 2015

A multi-contrast MRI study of microstructural brain damage in patients with mild cognitive impairment

Cristina Granziera; Alessandro Daducci; Alessia Donati; Guillaume Bonnier; David Romascano; Alexis Roche; M. Bach Cuadra; D. Schmitter; Stefan Klöppel; Reto Meuli; A. von Gunten; Gunnar Krueger

Objectives The aim of this study was to investigate pathological mechanisms underlying brain tissue alterations in mild cognitive impairment (MCI) using multi-contrast 3 T magnetic resonance imaging (MRI). Methods Forty-two MCI patients and 77 healthy controls (HC) underwent T1/T2* relaxometry as well as Magnetization Transfer (MT) MRI. Between-groups comparisons in MRI metrics were performed using permutation-based tests. Using MRI data, a generalized linear model (GLM) was computed to predict clinical performance and a support-vector machine (SVM) classification was used to classify MCI and HC subjects. Results Multi-parametric MRI data showed microstructural brain alterations in MCI patients vs HC that might be interpreted as: (i) a broad loss of myelin/cellular proteins and tissue microstructure in the hippocampus (p ≤ 0.01) and global white matter (p < 0.05); and (ii) iron accumulation in the pallidus nucleus (p ≤ 0.05). MRI metrics accurately predicted memory and executive performances in patients (p ≤ 0.005). SVM classification reached an accuracy of 75% to separate MCI and HC, and performed best using both volumes and T1/T2*/MT metrics. Conclusion Multi-contrast MRI appears to be a promising approach to infer pathophysiological mechanisms leading to brain tissue alterations in MCI. Likewise, parametric MRI data provide powerful correlates of cognitive deficits and improve automatic disease classification based on morphometric features.


Magnetic Resonance in Medicine | 2017

Prospective head motion correction using FID-guided on-demand image navigators

Maryna Waszak; Pavel Falkovskiy; Tom Hilbert; Guillaume Bonnier; Bénédicte Maréchal; Reto Meuli; Rolf Gruetter; Tobias Kober; Gunnar Krueger

We suggest a motion correction concept that employs free‐induction‐decay (FID) navigator signals to continuously monitor motion and to guide the acquisition of image navigators for prospective motion correction following motion detection.


Investigative Radiology | 2017

An Ultra-high Field Study of Cerebellar Pathology in Early Relapsing-remitting Multiple Sclerosis Using Mp2rage

Mário João Fartaria; Kieran O'Brien; Alexandra Sorega; Guillaume Bonnier; Alexis Roche; Pavel Falkovskiy; Gunnar Krueger; Tobias Kober; Meritxell Bach Cuadra; Cristina Granziera

Objectives The aim of this study was to study focal cerebellar pathology in early stages of multiple sclerosis (MS) using ultra-high-field magnetization-prepared 2 inversion-contrast rapid gradient-echo (7T MP2RAGE). Materials and Methods Twenty early-stage relapsing-remitting MS patients underwent an MP2RAGE acquisition at 7 T magnetic resonance imaging (MRI) (images acquired at 2 different resolutions: 0.58 × 0.58 × 0.58 mm3, 7T_0.58, and 0.75 × 0.75 × 0.90 mm3, 7T_0.75) and 3 T MRI (1.0 × 1.0 × 1.2 mm3, 3T_1.0). Total cerebellar lesion load and volume and mean cerebellar lesion volume were compared across images using a Wilcoxon signed-rank test. Mean T1 relaxation times in lesions and normal-appearing tissue as well as contrast-to-noise ratio (CNR) measurements were also compared using a Wilcoxon signed-rank test. A multivariate analysis was applied to assess the contribution of MRI metrics to clinical performance in MS patients. Results Both 7T_0.58 and 7T_0.75 MP2RAGE showed significantly higher lesion load compared with 3T_1.0 MP2RAGE (P < 0.001). Plaques that were judged as leukocortical in 7T_0.75 and 3T_1.0 MP2RAGEs were instead identified as WM lesions in 7T_0.58 MP2RAGE. Cortical lesion CNR was significantly higher in MP2RAGEs at 7 T than at 3 T. Total lesion load as well as total and mean lesion volume obtained at both 7 T and 3 T MP2RAGE significantly predicted attention (P < 0.05, adjusted R2 = 0.5), verbal fluency (P < 0.01, adjusted R2 = 0.6), and motor performance (P = 0.01, adjusted R2 = 0.7). Conclusions This study demonstrates the value of 7 T MP2RAGE to study the cerebellum in early MS patients. 7T_0.58 MP2RAGE provides a more accurate anatomical description of white and gray matter pathology compared with 7T_0.75 and 3T_1.0 MP2RAGE, likely due to the improved spatial resolution, lower partial volume effects, and higher CNR.


Frontiers in Neurology | 2017

The combined Quantification and interpretation of Multiple Quantitative Magnetic resonance imaging Metrics enlightens longitudinal changes compatible with Brain repair in relapsing-remitting Multiple sclerosis Patients

Guillaume Bonnier; Bénédicte Maréchal; Mário João Fartaria; Pavel Falkowskiy; José P. Marques; Samanta Simioni; Myriam Schluep; Renaud Du Pasquier; Jean-Philippe Thiran; Gunnar Krueger; Cristina Granziera

Objective Quantitative and semi-quantitative MRI (qMRI) metrics provide complementary specificity and differential sensitivity to pathological brain changes compatible with brain inflammation, degeneration, and repair. Moreover, advanced magnetic resonance imaging (MRI) metrics with overlapping elements amplify the true tissue-related information and limit measurement noise. In this work, we combined multiple advanced MRI parameters to assess focal and diffuse brain changes over 2 years in a group of early-stage relapsing-remitting MS patients. Methods Thirty relapsing-remitting MS patients with less than 5 years disease duration and nine healthy subjects underwent 3T MRI at baseline and after 2 years including T1, T2, T2* relaxometry, and magnetization transfer imaging. To assess longitudinal changes in normal-appearing (NA) tissue and lesions, we used analyses of variance and Bonferroni correction for multiple comparisons. Multivariate linear regression was used to assess the correlation between clinical outcome and multiparametric MRI changes in lesions and NA tissue. Results In patients, we measured a significant longitudinal decrease of mean T2 relaxation times in NA white matter (p = 0.005) and a decrease of T1 relaxation times in the pallidum (p < 0.05), which are compatible with edema reabsorption and/or iron deposition. No longitudinal changes in qMRI metrics were observed in controls. In MS lesions, we measured a decrease in T1 relaxation time (p-value < 2.2e−16) and a significant increase in MTR (p-value < 1e−6), suggesting repair mechanisms, such as remyelination, increased axonal density, and/or a gliosis. Last, the evolution of advanced MRI metrics—and not changes in lesions or brain volume—were correlated to motor and cognitive tests scores evolution (Adj-R2 > 0.4, p < 0.05). In summary, the combination of multiple advanced MRI provided evidence of changes compatible with focal and diffuse brain repair at early MS stages as suggested by histopathological studies.


PLOS ONE | 2016

A New Approach for Deep Gray Matter Analysis Using Partial-Volume Estimation

Guillaume Bonnier; Tobias Kober; Myriam Schluep; Renaud Du Pasquier; Gunnar Krueger; Reto Meuli; Cristina Granziera; Alexis Roche

Introduction The existence of partial volume effects in brain MR images makes it challenging to understand physio-pathological alterations underlying signal changes due to pathology across groups of healthy subjects and patients. In this study, we implement a new approach to disentangle gray and white matter alterations in the thalamus and the basal ganglia. The proposed method was applied to a cohort of early multiple sclerosis (MS) patients and healthy subjects to evaluate tissue-specific alterations related to diffuse inflammatory or neurodegenerative processes. Method Forty-three relapsing-remitting MS patients and nineteen healthy controls underwent 3T MRI including: (i) fluid-attenuated inversion recovery, double inversion recovery, magnetization-prepared gradient echo for lesion count, and (ii) T1 relaxometry. We applied a partial volume estimation algorithm to T1 relaxometry maps to gray and white matter local concentrations as well as T1 values characteristic of gray and white matter in the thalamus and the basal ganglia. Statistical tests were performed to compare groups in terms of both global T1 values, tissue characteristic T1 values, and tissue concentrations. Results Significant increases in global T1 values were observed in the thalamus (p = 0.038) and the putamen (p = 0.026) in RRMS patients compared to HC. In the Thalamus, the T1 increase was associated with a significant increase in gray matter characteristic T1 (p = 0.0016) with no significant effect in white matter. Conclusion The presented methodology provides additional information to standard MR signal averaging approaches that holds promise to identify the presence and nature of diffuse pathology in neuro-inflammatory and neurodegenerative diseases.


NeuroImage | 2018

Surface-based characteristics of the cerebellar cortex visualized with ultra-high field MRI

Yohan Boillat; Pierre-Louis Bazin; Kieran O'Brien; Mário João Fartaria; Guillaume Bonnier; Gunnar Krueger; Wietske van der Zwaag; Cristina Granziera

&NA; Although having a relatively homogeneous cytoarchitectonic organization, the cerebellar cortex is a heterogeneous region characterized by different amounts of myelin, iron and protein expression profiles. In this study, we used quantitative T1 and T2* mapping at ultra‐high field (7T) MRI to investigate the tissue characteristics of the cerebellar gray matter surface and its layers. Detailed subject‐specific surfaces were generated at three different cortical depths and averaged across subjects to create averaged T1‐ and T2*‐maps on the cerebellar surface. T1 surfaces showed an alternation of lower and higher T1 values when going from the median to the lateral part of the cerebellar hemispheres. In addition, longer T1 values were observed in the more superficial gray matter layers. T2*‐maps showed a similar longitudinal pattern, but no change related to the cortical depths. These patterns are possibly due to variations in the level of myelination, iron and zebrin protein expression. HighlightsQuantitative T1 and T2* maps reflect the distribution of myelin and iron in the brain.qT1 and qT2* values were mapped onto study‐specific cerebellar surfaces.Both T1 and T2* cerebellar surfaces revealed patterns of parasagittal bands.T1 values were lower for deeper cortical depths, while T2* values did not differ between different cortical depths.

Collaboration


Dive into the Guillaume Bonnier's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Renaud Du Pasquier

University Hospital of Lausanne

View shared research outputs
Top Co-Authors

Avatar

Jean-Philippe Thiran

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar

David Romascano

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Reto Meuli

University Hospital of Lausanne

View shared research outputs
Researchain Logo
Decentralizing Knowledge