Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Guillaume Calmettes is active.

Publication


Featured researches published by Guillaume Calmettes.


Aging Cell | 2014

Mitochondrial energetics is impaired in vivo in aged skeletal muscle

Gilles Gouspillou; Isabelle Bourdel-Marchasson; Richard Rouland; Guillaume Calmettes; Marc Biran; Véronique Deschodt-Arsac; Sylvain Miraux; Eric Thiaudière; Philippe Pasdois; Dominique Detaille; Jean-Michel Franconi; Marion Babot; Véronique Trézéguet; Laurent Arsac; Philippe Diolez

With aging, most skeletal muscles undergo a progressive loss of mass and strength, a process termed sarcopenia. Aging‐related defects in mitochondrial energetics have been proposed to be causally involved in sarcopenia. However, changes in muscle mitochondrial oxidative phosphorylation with aging remain a highly controversial issue, creating a pressing need for integrative approaches to determine whether mitochondrial bioenergetics are impaired in aged skeletal muscle. To address this issue, mitochondrial bioenergetics was first investigated in vivo in the gastrocnemius muscle of adult (6 months) and aged (21 months) male Wistar rats by combining a modular control analysis approach with 31P magnetic resonance spectroscopy measurements of energetic metabolites. Using this innovative approach, we revealed that the in vivo responsiveness (‘elasticity’) of mitochondrial oxidative phosphorylation to contraction‐induced increase in ATP demand is significantly reduced in aged skeletal muscle, a reduction especially pronounced under low contractile activities. In line with this in vivo aging‐related defect in mitochondrial energetics, we found that the mitochondrial affinity for ADP is significantly decreased in mitochondria isolated from aged skeletal muscle. Collectively, the results of this study demonstrate that mitochondrial bioenergetics are effectively altered in vivo in aged skeletal muscle and provide a novel cellular basis for this phenomenon.


Biochimica et Biophysica Acta | 2015

Increased reactive oxygen species production during reductive stress: The roles of mitochondrial glutathione and thioredoxin reductases

Paavo Korge; Guillaume Calmettes; James N. Weiss

Both extremes of redox balance are known to cause cardiac injury, with mounting evidence revealing that the injury induced by both oxidative and reductive stress is oxidative in nature. During reductive stress, when electron acceptors are expected to be mostly reduced, some redox proteins can donate electrons to O2 instead, which increases reactive oxygen species (ROS) production. However, the high level of reducing equivalents also concomitantly enhances ROS scavenging systems involving redox couples such as NADPH/NADP+ and GSH/GSSG. Here our objective was to explore how reductive stress paradoxically increases net mitochondrial ROS production despite the concomitant enhancement of ROS scavenging systems. Using recombinant enzymes and isolated permeabilized cardiac mitochondria, we show that two normally antioxidant matrix NADPH reductases, glutathione reductase and thioredoxin reductase, generate H2O2 by leaking electrons from their reduced flavoprotein to O2 when electron flow is impaired by inhibitors or because of limited availability of their natural electron acceptors, GSSG and oxidized thioredoxin. The spillover of H2O2 under these conditions depends on H2O2 reduction by peroxiredoxin activity, which may regulate redox signaling in response to endogenous or exogenous factors. These findings may explain how ROS production during reductive stress overwhelms ROS scavenging capability, generating the net mitochondrial ROS spillover causing oxidative injury. These enzymes could potentially be targeted to increase cancer cell death or modulate H2O2-induced redox signaling to protect the heart against ischemia/reperfusion damage.


Biochimica et Biophysica Acta | 2010

Alteration of mitochondrial oxidative phosphorylation in aged skeletal muscle involves modification of adenine nucleotide translocator

Gilles Gouspillou; Isabelle Bourdel-Marchasson; Richard Rouland; Guillaume Calmettes; Jean-Michel Franconi; Véronique Deschodt-Arsac; Philippe Diolez

The process of skeletal muscle aging is characterized by a progressive loss of muscle mass and functionality. The underlying mechanisms are highly complex and remain unclear. This study was designed to further investigate the consequences of aging on mitochondrial oxidative phosphorylation in rat gastrocnemius muscle, by comparing young (6 months) and aged (21 months) rats. Maximal oxidative phosphorylation capacity was clearly reduced in older rats, while mitochondrial efficiency was unaffected. Inner membrane properties were unaffected in aged rats since proton leak kinetics were identical to young rats. Application of top-down control analysis revealed a dysfunction of the phosphorylation module in older rats, responsible for a dysregulation of oxidative phosphorylation under low activities close to in vivo ATP turnover. This dysregulation is responsible for an impaired mitochondrial response toward changes in cellular ATP demand, leading to a decreased membrane potential which may in turn affect ROS production and ion homeostasis. Based on our data, we propose that modification of ANT properties with aging could partly explain these mitochondrial dysfunctions.


Biochemical Journal | 2008

Physiological heart activation by adrenaline involves parallel activation of ATP usage and supply

Bernard Korzeniewski; Véronique Deschodt-Arsac; Guillaume Calmettes; Jean-Michel Franconi; Philippe Diolez

During low-to-high work transition in adult mammalian heart in vivo the concentrations of free ADP, ATP, PCr (phosphocreatine), P(i) and NADH are essentially constant, in striking contrast with skeletal muscle. The direct activation by calcium ions of ATP usage and feedback activation of ATP production by ADP (and P(i)) alone cannot explain this perfect homoeostasis. A comparison of the response to adrenaline (increase in rate-pressure product and [PCr]) of the intact beating perfused rat heart with the elasticities of the PCr producer and consumer to PCr concentration demonstrated that both the ATP/PCr-producing block and ATP/PCr-consuming block are directly activated to a similar extent during physiological heart activation. Our finding constitutes a direct evidence for the parallel-activation mechanism of the regulation of oxidative phosphorylation in heart postulated previously in a theoretical way.


PLOS ONE | 2010

Improved energy supply regulation in chronic hypoxic mouse counteracts hypoxia-induced altered cardiac energetics.

Guillaume Calmettes; Véronique Deschodt-Arsac; Gilles Gouspillou; Sylvain Miraux; Bernard Muller; Jean-Michel Franconi; Eric Thiaudière; Philippe Diolez

Background Hypoxic states of the cardiovacular system are undoubtedly associated with the most frequent diseases of modern time. Therefore, understanding hypoxic resistance encountered after physiological adaptation such as chronic hypoxia, is crucial to better deal with hypoxic insult. In this study, we examine the role of energetic modifications induced by chronic hypoxia (CH) in the higher tolerance to oxygen deprivation. Methodology/Principal Findings Swiss mice were exposed to a simulated altitude of 5500 m in a barochamber for 21 days. Isolated perfused hearts were used to study the effects of a decreased oxygen concentration in the perfusate on contractile performance (RPP) and phosphocreatine (PCr) concentration (assessed by 31P-NMR), and to describe the integrated changes in cardiac energetics regulation by using Modular Control Analysis (MoCA). Oxygen reduction induced a concomitant decrease in RPP (−46%) and in [PCr] (−23%) in Control hearts while CH hearts energetics was unchanged. MoCA demonstrated that this adaptation to hypoxia is the direct consequence of the higher responsiveness (elasticity) of ATP production of CH hearts compared with Controls (−1.88±0.38 vs −0.89±0.41, p<0.01) measured under low oxygen perfusion. This higher elasticity induces an improved response of energy supply to cellular energy demand. The result is the conservation of a healthy control pattern of contraction in CH hearts, whereas Control hearts are severely controlled by energy supply. Conclusions/Significance As suggested by the present study, the mechanisms responsible for this increase in elasticity and the consequent improved ability of CH heart metabolism to respond to oxygen deprivation could participate to limit the damages induced by hypoxia.


Magnetic Resonance in Medicine | 2009

4D retrospective black blood trueFISP imaging of mouse heart

Sylvain Miraux; Guillaume Calmettes; Philippe Massot; William Lefrançois; Elodie Parzy; Bernard Muller; Laurent M. Arsac; Véronique Deschodt-Arsac; Jean-Michel Franconi; Philippe Diolez; Eric Thiaudière

The purpose of this study was to demonstrate the feasibility of steady‐state True fast imaging with steady precession (TrueFISP) four‐dimensional imaging of mouse heart at high resolution and its efficiency for cardiac volumetry. Three‐dimensional cine‐imaging of control and hypoxic mice was carried out at 4.7 T without magnetization preparation or ECG‐triggering. The k‐space lines were acquired with the TrueFISP sequence (pulse repetition time/echo time = 4/2 ms) in a repeated sequential manner. Retrospective reordering of raw data allowed the reconstruction of 10 three‐dimensional images per cardiac cycle. The acquisition scheme used an alternating radiofrequency phase and sum‐of‐square reconstruction method. Black‐blood three‐dimensional images at around 200 μm resolution were produced without banding artifact throughout the cardiac cycle. High contrast to noise made it possible to estimate cavity volumes during diastole and systole. Right and left ventricular stroke volume was significantly higher in hypoxic mice vs controls (20.2 ± 2 vs 15.1 ± 2; P < 0.05, 24.9 ± 2 vs 20.4 ± 2; P < 0.05, respectively). In conclusion, four‐dimensional black‐blood TrueFISP imaging in living mice is a method of choice to investigate cardiac abnormalities in mouse models. Magn Reson Med, 2009.


The Journal of General Physiology | 2013

Hexokinase-mitochondrial interactions regulate glucose metabolism differentially in adult and neonatal cardiac myocytes

Guillaume Calmettes; Scott A. John; James N. Weiss; Bernard Ribalet

In mammalian tumor cell lines, localization of hexokinase (HK) isoforms to the cytoplasm or mitochondria has been shown to control their anabolic (glycogen synthesis) and catabolic (glycolysis) activities. In this study, we examined whether HK isoform differences could explain the markedly different metabolic profiles between normal adult and neonatal cardiac tissue. We used a set of novel genetically encoded optical imaging tools to track, in real-time in isolated adult (ARVM) and neonatal (NRVM) rat ventricular myocytes, the subcellular distributions of HKI and HKII, and the functional consequences on glucose utilization. We show that HKII, the predominant isoform in ARVM, dynamically translocates from mitochondria and cytoplasm in response to removal of extracellular glucose or addition of iodoacetate (IAA). In contrast, HKI, the predominant isoform in NRVM, is only bound to mitochondria and is not displaced by the above interventions. In ARVM, overexpression of HKI, but not HKII, increased glycolytic activity. In neonatal rat ventricular myocytes (NVRM), knockdown of HKI, but not HKII, decreased glycolytic activity. In conclusion, differential interactions of HKI and HKII with mitochondria underlie the different metabolic profiles of ARVM and NRVM, accounting for the markedly increased glycolytic activity of NRVM.


Radiology | 2010

In Vivo MR Angiography and Velocity Measurement in Mice Coronary Arteries at 9.4 T: Assessment of Coronary Flow Velocity Reserve

Hubert Cochet; Michel Montaudon; François Laurent; Guillaume Calmettes; Jean-Michel Franconi; Sylvain Miraux; Eric Thiaudière; Elodie Parzy

PURPOSE To demonstrate the feasibility of coronary magnetic resonance (MR) angiography in living mice and to evaluate a dynamic MR angiographic method for coronary flow measurement at 9.4-T field strength. MATERIALS AND METHODS This study was conducted according to European law and was in full compliance with National Institutes of Health recommendations for animal care and a local institutional animal care committee. Mice were anesthetized by using isoflurane. First, time-of-flight MR angiography was performed in 10 mice to measure coronary diameters at 80-mum isotropic resolution. Second, left coronary artery (LCA) velocity measurements were performed at seven cardiac phases in nine other mice to assess the velocity curve profile. Third, coronary velocities were measured at the middiastolic phase in 13 mice at rest and during adenosine-induced hyperemia to calculate coronary flow velocity reserve (CFVR). The Pearson coefficient compared the correlation between isoflurane dose and CFVR. Paired t tests compared R-R intervals and respiratory rates between rest and hyperemia. RESULTS Proximal diameters were, respectively, 404 mum +/- 34 [standard deviation] and 259 mum +/- 22 for the LCAs and the right coronary arteries, which were in accordance with reported values. The velocity curve profile throughout the cardiac cycle was similar to values from the literature. Baseline and hyperemic velocities were, respectively, 19.0 cm/sec +/- 4.4 and 33.7 cm/sec +/- 4.7 (P<.001), resulting in a CFVR of 1.77 +/- 0.19. CFVR did not correlate with isoflurane dose (r = 0.05, P = .88). R-R intervals shortened by 2.5% during hyperemia (P = .04). Respiratory rates showed no difference between rest and hyperemia (P = .39). CONCLUSION High-spatial-resolution three-dimensional coronary MR angiography is feasible in living mice. Dynamic MR angiography depicts coronary velocity changes throughout the cardiac cycle and between rest and maximum hyperemia, providing a tool for CFVR assessment.


Heart Rhythm | 2013

Pro- and antiarrhythmic effects of ATP-sensitive potassium current activation on reentry during early afterdepolarization-mediated arrhythmias

Marvin G. Chang; Enno de Lange; Guillaume Calmettes; Alan Garfinkel; Zhilin Qu; James N. Weiss

BACKGROUND Under conditions promoting early afterdepolarizations (EADs), ventricular tissue can become bi-excitable, that is, capable of wave propagation mediated by either the Na current (INa) or the L-type calcium current (ICa,L), raising the possibility that ICa,L-mediated reentry may contribute to polymorphic ventricular tachycardia (PVT) and torsades de pointes. ATP-sensitive K current (IKATP) activation suppresses EADs, but the effects on ICa,L-mediated reentry are unknown. OBJECTIVE To investigate the effects of IKATP activation on ICa,L-mediated reentry. METHODS We performed optical voltage mapping in cultured neonatal rat ventricular myocyte monolayers exposed to BayK8644 and isoproterenol. The effects of pharmacologically activating IKATP with pinacidil were analyzed. RESULTS In 13 monolayers with anatomic ICa,L-mediated reentry around a central obstacle, pinacidil (50 μM) converted ICa,L-mediated reentry to INa-mediated reentry. In 33 monolayers with functional ICa,L-mediated reentry (spiral waves), pinacidil terminated reentry in 17, converted reentry into more complex INa-mediated reentry resembling fibrillation in 12, and had no effect in 4. In simulated 2-dimensional bi-excitable tissue in which ICa,L- and INa-mediated wave fronts coexisted, slow IKATP activation (over minutes) reliably terminated rotors but rapid IKATP activation (over seconds) often converted ICa,L-mediated reentry to INa-mediated reentry resembling fibrillation. CONCLUSIONS IKATP activation can have proarrhythmic effects on EAD-mediated arrhythmias if ICa,L-mediated reentry is present.


Free Radical Biology and Medicine | 2016

Reactive oxygen species production in cardiac mitochondria after complex I inhibition: Modulation by substrate-dependent regulation of the NADH/NAD(+) ratio

Paavo Korge; Guillaume Calmettes; James N. Weiss

Reactive oxygen species (ROS) production by isolated complex I is steeply dependent on the NADH/NAD(+) ratio. We used alamethicin-permeabilized mitochondria to study the substrate-dependence of matrix NADH and ROS production when complex I is inhibited by piericidin or rotenone. When complex I was inhibited in the presence of malate/glutamate, membrane permeabilization accelerated O2 consumption and ROS production due to a rapid increase in NADH generation that was not limited by matrix NAD(H) efflux. In the presence of inhibitor, both malate and glutamate were required to generate a high enough NADH/NAD(+) ratio to support ROS production through the coordinated activity of malate dehydrogenase (MDH) and aspartate aminotransferase (AST). With malate and glutamate present, the rate of ROS production was closely related to local NADH generation, whereas in the absence of substrates, ROS production was accelerated by increase in added [NADH]. With malate alone, oxaloacetate accumulation limited NADH production by MDH unless glutamate was also added to promote oxaloacetate removal via AST. α-ketoglutarate (KG) as well as AST inhibition also reversed NADH generation and inhibited ROS production. If malate and glutamate were provided before rather than after piericidin or rotenone, ROS generation was markedly reduced due to time-dependent efflux of CoA. CoA depletion decreased KG oxidation by α-ketoglutarate dehydrogenase (KGDH), such that the resulting increase in [KG] inhibited oxaloacetate removal by AST and NADH generation by MDH. These findings were largely obscured in intact mitochondria due to robust H2O2 scavenging and limited ability to control substrate concentrations in the matrix. We conclude that in mitochondria with inhibited complex I, malate/glutamate-stimulated ROS generation depends strongly on oxaloacetate removal and on the ability of KGDH to oxidize KG generated by AST.

Collaboration


Dive into the Guillaume Calmettes's collaboration.

Top Co-Authors

Avatar

James N. Weiss

University of California

View shared research outputs
Top Co-Authors

Avatar

Jean-Michel Franconi

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Scott A. John

University of California

View shared research outputs
Top Co-Authors

Avatar

Eric Thiaudière

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sylvain Miraux

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Gilles Gouspillou

Université du Québec à Montréal

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paavo Korge

University of California

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge