Guillaume Cambray
Pasteur Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Guillaume Cambray.
Nature Methods | 2013
Vivek K. Mutalik; Joao C. Guimaraes; Guillaume Cambray; Colin Lam; Marc Juul Christoffersen; Quynh-Anh Mai; Andrew B Tran; Morgan Paull; Jay D. Keasling; Adam P. Arkin; Drew Endy
An inability to reliably predict quantitative behaviors for novel combinations of genetic elements limits the rational engineering of biological systems. We developed an expression cassette architecture for genetic elements controlling transcription and translation initiation in Escherichia coli: transcription elements encode a common mRNA start, and translation elements use an overlapping genetic motif found in many natural systems. We engineered libraries of constitutive and repressor-regulated promoters along with translation initiation elements following these definitions. We measured activity distributions for each library and selected elements that collectively resulted in expression across a 1,000-fold observed dynamic range. We studied all combinations of curated elements, demonstrating that arbitrary genes are reliably expressed to within twofold relative target expression windows with ∼93% reliability. We expect the genetic element definitions validated here can be collectively expanded to create collections of public-domain standard biological parts that support reliable forward engineering of gene expression at genome scales.
Science | 2009
Emilie Guérin; Guillaume Cambray; Neus Sanchez-Alberola; Susana Campoy; Ivan Erill; Sandra Da Re; Bruno Gonzalez-Zorn; Jordi Barbé; Marie-Cécile Ploy; Didier Mazel
Bacteria can mobilize antibiotic resistance under stressful conditions. Integrons are found in the genome of hundreds of environmental bacteria but are mainly known for their role in the capture and spread of antibiotic resistance determinants among Gram-negative pathogens. We report a direct link between this system and the ubiquitous SOS response. We found that LexA controlled expression of most integron integrases and consequently regulated cassette recombination. This regulatory coupling enhanced the potential for cassette swapping and capture in cells under stress, while minimizing cassette rearrangements or loss in constant environments. This finding exposes integrons as integrated adaptive systems and has implications for antibiotic treatment policies.
Proceedings of the National Academy of Sciences of the United States of America | 2013
Sriram Kosuri; Daniel B. Goodman; Guillaume Cambray; Vivek K. Mutalik; Yuan Gao; Adam P. Arkin; Drew Endy; George M. Church
The inability to predict heterologous gene expression levels precisely hinders our ability to engineer biological systems. Using well-characterized regulatory elements offers a potential solution only if such elements behave predictably when combined. We synthesized 12,563 combinations of common promoters and ribosome binding sites and simultaneously measured DNA, RNA, and protein levels from the entire library. Using a simple model, we found that RNA and protein expression were within twofold of expected levels 80% and 64% of the time, respectively. The large dataset allowed quantitation of global effects, such as translation rate on mRNA stability and mRNA secondary structure on translation rate. However, the worst 5% of constructs deviated from prediction by 13-fold on average, which could hinder large-scale genetic engineering projects. The ease and scale this of approach indicates that rather than relying on prediction or standardization, we can screen synthetic libraries for desired behavior.
Nucleic Acids Research | 2013
Guillaume Cambray; Joao C. Guimaraes; Vivek K. Mutalik; Colin Lam; Quynh-Anh Mai; Tim Thimmaiah; James M. Carothers; Adam P. Arkin; Drew Endy
The reliable forward engineering of genetic systems remains limited by the ad hoc reuse of many types of basic genetic elements. Although a few intrinsic prokaryotic transcription terminators are used routinely, termination efficiencies have not been studied systematically. Here, we developed and validated a genetic architecture that enables reliable measurement of termination efficiencies. We then assembled a collection of 61 natural and synthetic terminators that collectively encode termination efficiencies across an ∼800-fold dynamic range within Escherichia coli. We simulated co-transcriptional RNA folding dynamics to identify competing secondary structures that might interfere with terminator folding kinetics or impact termination activity. We found that structures extending beyond the core terminator stem are likely to increase terminator activity. By excluding terminators encoding such context-confounding elements, we were able to develop a linear sequence-function model that can be used to estimate termination efficiencies (r = 0.9, n = 31) better than models trained on all terminators (r = 0.67, n = 54). The resulting systematically measured collection of terminators should improve the engineering of synthetic genetic systems and also advance quantitative modeling of transcription termination.
Mobile Dna | 2011
Guillaume Cambray; Neus Sanchez-Alberola; Susana Campoy; Emilie Guérin; Sandra Da Re; Bruno Gonzalez-Zorn; Marie-Cécile Ploy; Jordi Barbé; Didier Mazel; Ivan Erill
BackgroundIntegrons are found in hundreds of environmental bacterial species, but are mainly known as the agents responsible for the capture and spread of antibiotic-resistance determinants between Gram-negative pathogens. The SOS response is a regulatory network under control of the repressor protein LexA targeted at addressing DNA damage, thus promoting genetic variation in times of stress. We recently reported a direct link between the SOS response and the expression of integron integrases in Vibrio cholerae and a plasmid-borne class 1 mobile integron. SOS regulation enhances cassette swapping and capture in stressful conditions, while freezing the integron in steady environments. We conducted a systematic study of available integron integrase promoter sequences to analyze the extent of this relationship across the Bacteria domain.ResultsOur results showed that LexA controls the expression of a large fraction of integron integrases by binding to Escherichia coli-like LexA binding sites. In addition, the results provide experimental validation of LexA control of the integrase gene for another Vibrio chromosomal integron and for a multiresistance plasmid harboring two integrons. There was a significant correlation between lack of LexA control and predicted inactivation of integrase genes, even though experimental evidence also indicates that LexA regulation may be lost to enhance expression of integron cassettes.ConclusionsAncestral-state reconstruction on an integron integrase phylogeny led us to conclude that the ancestral integron was already regulated by LexA. The data also indicated that SOS regulation has been actively preserved in mobile integrons and large chromosomal integrons, suggesting that unregulated integrase activity is selected against. Nonetheless, additional adaptations have probably arisen to cope with unregulated integrase activity. Identifying them may be fundamental in deciphering the uneven distribution of integrons in the Bacteria domain.
ACS Synthetic Biology | 2013
Cheryl P. Goldbeck; Heather M. Jensen; Michaela A. TerAvest; Nicole Beedle; Yancey Appling; Matt Hepler; Guillaume Cambray; Vivek K. Mutalik; Largus T. Angenent; Caroline M. Ajo-Franklin
Introduction of the electron transfer complex MtrCAB from Shewanella oneidensis MR-1 into a heterologous host provides a modular and molecularly defined route for electrons to be transferred to an extracellular inorganic solid. However, an Escherichia coli strain expressing this pathway displayed limited control of MtrCAB expression and impaired cell growth. To overcome these limitations and to improve heterologous extracellular electron transfer, we used an E. coli host with a more tunable induction system and a panel of constitutive promoters to generate a library of strains that separately transcribe the mtr and cytochrome c maturation (ccm) operons over 3 orders of magnitude. From this library, we identified strains that show 2.2 times higher levels of MtrC and MtrA and that have improved cell growth. We find that a ~300-fold decrease in the efficiency of MtrC and MtrA synthesis with increasing mtr promoter activity critically limits the maximum expression level of MtrC and MtrA. We also tested the extracellular electron transfer capabilities of a subset of the strains using a three-electrode microbial electrochemical system. Interestingly, the strain with improved cell growth and fewer morphological changes generated the largest maximal current per cfu, rather than the strain with more MtrC and MtrA. This strain also showed ~30-fold greater maximal current per cfu than its ccm-only control strain. Thus, the conditions for optimal MtrCAB expression and anode reduction are distinct, and minimal perturbations to cell morphology are correlated with improved extracellular electron transfer in E. coli.
Nucleic Acids Research | 2010
David Bikard; Stéphane Julié-Galau; Guillaume Cambray; Didier Mazel
As the field of synthetic biology expands, strategies and tools for the rapid construction of new biochemical pathways will become increasingly valuable. Purely rational design of complex biological pathways is inherently limited by the current state of our knowledge. Selection of optimal arrangements of genetic elements from randomized libraries may well be a useful approach for successful engineering. Here, we propose the construction and optimization of metabolic pathways using the inherent gene shuffling activity of a natural bacterial site-specific recombination system, the integron. As a proof of principle, we constructed and optimized a functional tryptophan biosynthetic operon in Escherichia coli. The trpA-E genes along with ‘regulatory’ elements were delivered as individual recombination cassettes in a synthetic integron platform. Integrase-mediated recombination generated thousands of genetic combinations overnight. We were able to isolate a large number of arrangements displaying varying fitness and tryptophan production capacities. Several assemblages required as many as six recombination events and produced as much as 11-fold more tryptophan than the natural gene order in the same context.
PLOS Genetics | 2008
Guillaume Cambray; Didier Mazel
The evolutionary potential of a gene is constrained not only by the amino acid sequence of its product, but by its DNA sequence as well. The topology of the genetic code is such that half of the amino acids exhibit synonymous codons that can reach different subsets of amino acids from each other through single mutation. Thus, synonymous DNA sequences should access different regions of the protein sequence space through a limited number of mutations, and this may deeply influence the evolution of natural proteins. Here, we demonstrate that this feature can be of value for manipulating protein evolvability. We designed an algorithm that, starting from an input gene, constructs a synonymous sequence that systematically includes the codons with the most different evolutionary perspectives; i.e., codons that maximize accessibility to amino acids previously unreachable from the template by point mutation. A synonymous version of a bacterial antibiotic resistance gene was computed and synthesized. When concurrently submitted to identical directed evolution protocols, both the wild type and the recoded sequence led to the isolation of specific, advantageous phenotypic variants. Simulations based on a mutation isolated only from the synthetic gene libraries were conducted to assess the impact of sub-functional selective constraints, such as codon usage, on natural adaptation. Our data demonstrate that rational design of synonymous synthetic genes stands as an affordable improvement to any directed evolution protocol. We show that using two synonymous DNA sequences improves the overall yield of the procedure by increasing the diversity of mutants generated. These results provide conclusive evidence that synonymous coding sequences do experience different areas of the corresponding protein adaptive landscape, and that a sequences codon usage effectively constrains the evolution of the encoded protein.
Current Opinion in Microbiology | 2011
Guillaume Cambray; Vivek K. Mutalik; Adam P. Arkin
The advent of genetic engineering-the ability to edit and insert DNA into living organisms-in the latter half of the 20th century created visions of a new era of synthetic biology, where novel biological functions could be designed and implemented for useful purposes. We are witnessing an exciting revolution of scale, wherein technical progresses allow for the manipulation of genetic material at the whole genome level. This will enable the manufacture of increasingly complex genetic designs to solve pressing challenges in health, energy and the environment-if and when such designs can be specified. We argue that the organized development of key common application organisms, engineered for engineerability, and attendant libraries of parts, pathways and standardized manufacturing are necessary for this genome-scale technology to realize its promise.
Bioinformatics | 2014
Joao C. Guimaraes; Miguel Rocha; Adam P. Arkin; Guillaume Cambray
Motivation: Current advances in DNA synthesis, cloning and sequencing technologies afford high-throughput implementation of artificial sequences into living cells. However, flexible computational tools for multi-objective sequence design are lacking, limiting the potential of these technologies. Results: We developed DNA-Tailor (D-Tailor), a fully extendable software framework, for property-based design of synthetic DNA sequences. D-Tailor permits the seamless integration of multiple sequence analysis tools into a generic Monte Carlo simulation that evolves sequences toward any combination of rationally defined properties. As proof of principle, we show that D-Tailor is capable of designing sequence libraries comprising all possible combinations among three different sequence properties influencing translation efficiency in Escherichia coli. The capacity to design artificial sequences that systematically sample any given parameter space should support the implementation of more rigorous experimental designs. Availability: Source code is available for download at https://sourceforge.net/projects/dtailor/ Contact: [email protected] or [email protected] Supplementary information: Supplementary data are available at Bioinformatics online (D-Tailor Tutorial).