Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Guillaume Drion is active.

Publication


Featured researches published by Guillaume Drion.


PLOS Computational Biology | 2011

How Modeling Can Reconcile Apparently Discrepant Experimental Results: The Case of Pacemaking in Dopaminergic Neurons

Guillaume Drion; Laurent Massotte; Rodolphe Sepulchre; Vincent Seutin

Midbrain dopaminergic neurons are endowed with endogenous slow pacemaking properties. In recent years, many different groups have studied the basis for this phenomenon, often with conflicting conclusions. In particular, the role of a slowly-inactivating L-type calcium channel in the depolarizing phase between spikes is controversial, and the analysis of slow oscillatory potential (SOP) recordings during the blockade of sodium channels has led to conflicting conclusions. Based on a minimal model of a dopaminergic neuron, our analysis suggests that the same experimental protocol may lead to drastically different observations in almost identical neurons. For example, complete L-type calcium channel blockade eliminates spontaneous firing or has almost no effect in two neurons differing by less than 1% in their maximal sodium conductance. The same prediction can be reproduced in a state of the art detailed model of a dopaminergic neuron. Some of these predictions are confirmed experimentally using single-cell recordings in brain slices. Our minimal model exhibits SOPs when sodium channels are blocked, these SOPs being uncorrelated with the spiking activity, as has been shown experimentally. We also show that block of a specific conductance (in this case, the SK conductance) can have a different effect on these two oscillatory behaviors (pacemaking and SOPs), despite the fact that they have the same initiating mechanism. These results highlight the fact that computational approaches, besides their well known confirmatory and predictive interests in neurophysiology, may also be useful to resolve apparent discrepancies between experimental results.


Siam Journal on Applied Dynamical Systems | 2012

An Organizing Center in a Planar Model of Neuronal Excitability

Alessio Franci; Guillaume Drion; Rodolphe Sepulchre

This paper studies the excitability properties of a generalized FitzHugh--Nagumo model. The model differs from the classical FitzHugh--Nagumo model in that it accounts for the effect of cooperative gating variables such as activation of calcium currents. Excitability is explored by unfolding a pitchfork bifurcation that is shown to organize five different types of excitability. In addition to the three classical types of neuronal excitability, two novel types are described and distinctly associated to the presence of cooperative variables.


European Journal of Neuroscience | 2010

M-type channels selectively control bursting in rat dopaminergic neurons

Guillaume Drion; Maxime Bonjean; Olivier Waroux; Jacqueline Scuvée-Moreau; Jean-François Liégeois; Terrence J. Sejnowski; Rodolphe Sepulchre; Vincent Seutin

Midbrain dopaminergic neurons in the substantia nigra, pars compacta and ventral tegmental area are critically important in many physiological functions. These neurons exhibit firing patterns that include tonic slow pacemaking, irregular firing and bursting, and the amount of dopamine that is present in the synaptic cleft is much increased during bursting. The mechanisms responsible for the switch between these spiking patterns remain unclear. Using both in‐vivo recordings combined with microiontophoretic or intraperitoneal drug applications and in‐vitro experiments, we have found that M‐type channels, which are present in midbrain dopaminergic cells, modulate the firing during bursting without affecting the background low‐frequency pacemaker firing. Thus, a selective blocker of these channels, 10,10‐bis(4‐pyridinylmethyl)‐9(10H)‐anthracenone dihydrochloride, specifically potentiated burst firing. Computer modeling of the dopamine neuron confirmed the possibility of a differential influence of M‐type channels on excitability during various firing patterns. Therefore, these channels may provide a novel target for the treatment of dopamine‐related diseases, including Parkinson’s disease and drug addiction. Moreover, our results demonstrate that the influence of M‐type channels on the excitability of these slow pacemaker neurons is conditional upon their firing pattern.


PLOS Computational Biology | 2013

A Balance Equation Determines a Switch in Neuronal Excitability

Alessio Franci; Guillaume Drion; Vincent Seutin; Rodolphe Sepulchre

We use the qualitative insight of a planar neuronal phase portrait to detect an excitability switch in arbitrary conductance-based models from a simple mathematical condition. The condition expresses a balance between ion channels that provide a negative feedback at resting potential (restorative channels) and those that provide a positive feedback at resting potential (regenerative channels). Geometrically, the condition imposes a transcritical bifurcation that rules the switch of excitability through the variation of a single physiological parameter. Our analysis of six different published conductance based models always finds the transcritical bifurcation and the associated switch in excitability, which suggests that the mathematical predictions have a physiological relevance and that a same regulatory mechanism is potentially involved in the excitability and signaling of many neurons.


PLOS ONE | 2012

A Novel Phase Portrait for Neuronal Excitability

Guillaume Drion; Alessio Franci; Vincent Seutin; Rodolphe Sepulchre

Fifty years ago, FitzHugh introduced a phase portrait that became famous for a twofold reason: it captured in a physiological way the qualitative behavior of Hodgkin-Huxley model and it revealed the power of simple dynamical models to unfold complex firing patterns. To date, in spite of the enormous progresses in qualitative and quantitative neural modeling, this phase portrait has remained a core picture of neuronal excitability. Yet, a major difference between the neurophysiology of 1961 and of 2011 is the recognition of the prominent role of calcium channels in firing mechanisms. We show that including this extra current in Hodgkin-Huxley dynamics leads to a revision of FitzHugh-Nagumo phase portrait that affects in a fundamental way the reduced modeling of neural excitability. The revisited model considerably enlarges the modeling power of the original one. In particular, it captures essential electrophysiological signatures that otherwise require non-physiological alteration or considerable complexification of the classical model. As a basic illustration, the new model is shown to highlight a core dynamical mechanism by which calcium channels control the two distinct firing modes of thalamocortical neurons.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Ion channel degeneracy enables robust and tunable neuronal firing rates

Guillaume Drion; Timothy O’Leary; Eve Marder

Significance Neurons need to be able to tune their firing rates to the input they receive. This requires a complex balance of different kinds of ion channels in the neuronal membrane, and most neurons express many more kinds of ion channels than are strictly necessary to produce spikes. We apply recently developed analysis techniques to uncover a hidden fragility in the spiking properties of neurons. Achieving a smooth relationship between input and output in a neuron is more difficult than previously thought, but reliable spiking rates can be achieved using multiple ion channel types with overlapping or degenerate properties. Our findings therefore suggest that biology exploits degeneracy to solve a difficult physiological tuning problem. Firing rate is an important means of encoding information in the nervous system. To reliably encode a wide range of signals, neurons need to achieve a broad range of firing frequencies and to move smoothly between low and high firing rates. This can be achieved with specific ionic currents, such as A-type potassium currents, which can linearize the frequency-input current curve. By applying recently developed mathematical tools to a number of biophysical neuron models, we show how currents that are classically thought to permit low firing rates can paradoxically cause a jump to a high minimum firing rate when expressed at higher levels. Consequently, achieving and maintaining a low firing rate is surprisingly difficult and fragile in a biological context. This difficulty can be overcome via interactions between multiple currents, implying a need for ion channel degeneracy in the tuning of neuronal properties.


Siam Journal on Applied Dynamical Systems | 2014

Modeling the Modulation of Neuronal Bursting: A Singularity Theory Approach

Alessio Franci; Guillaume Drion; Rodolphe Sepulchre

Exploiting the specific structure of neuron conductance-based models, the paper investigates the mathematical modeling of neuronal bursting modulation. The proposed approach combines singularity theory and geometric singular perturbations to capture the geometry of multiple time-scale attractors in the neighborhood of high-codimension singularities. We detect a three--time-scale bursting attractor in the universal unfolding of the winged cusp singularity and discuss the physiological relevance of the bifurcation and unfolding parameters in determining a physiological modulation of bursting. The results suggest generality and simplicity in the organizing role of the winged cusp singularity for the global dynamics of conductance-based models.


eNeuro | 2015

Dynamic Input Conductances Shape Neuronal Spiking

Guillaume Drion; Alessio Franci; Julie Dethier; Rodolphe Sepulchre

Reliable neuron activity is ensured by a tight regulation of the ion channels that resides in the neuron’s membrane. Understanding the causal mechanisms that relate this regulation to physiological and pathological neuronal activity is a necessary step for developing efficient therapies for neurological diseases associated with abnormal nervous system activity. Abstract Assessing the role of biophysical parameter variations in neuronal activity is critical to the understanding of modulation, robustness, and homeostasis of neuronal signalling. The paper proposes that this question can be addressed through the analysis of dynamic input conductances. Those voltage-dependent curves aggregate the concomitant activity of all ion channels in distinct timescales. They are shown to shape the current−voltage dynamical relationships that determine neuronal spiking. We propose an experimental protocol to measure dynamic input conductances in neurons. In addition, we provide a computational method to extract dynamic input conductances from arbitrary conductance-based models and to analyze their sensitivity to arbitrary parameters. We illustrate the relevance of the proposed approach for modulation, compensation, and robustness studies in a published neuron model based on data of the stomatogastric ganglion of the crab Cancer borealis.


Journal of Neurophysiology | 2015

A positive feedback at the cellular level promotes robustness and modulation at the circuit level.

Julie Dethier; Guillaume Drion; Alessio Franci; Rodolphe Sepulchre

This article highlights the role of a positive feedback gating mechanism at the cellular level in the robustness and modulation properties of rhythmic activities at the circuit level. The results are presented in the context of half-center oscillators, which are simple rhythmic circuits composed of two reciprocally connected inhibitory neuronal populations. Specifically, we focus on rhythms that rely on a particular excitability property, the postinhibitory rebound, an intrinsic cellular property that elicits transient membrane depolarization when released from hyperpolarization. Two distinct ionic currents can evoke this transient depolarization: a hyperpolarization-activated cation current and a low-threshold T-type calcium current. The presence of a slow activation is specific to the T-type calcium current and provides a slow positive feedback at the cellular level that is absent in the cation current. We show that this slow positive feedback is required to endow the network rhythm with physiological modulation and robustness properties. This study thereby identifies an essential cellular property to be retained at the network level in modeling network robustness and modulation.


conference on decision and control | 2015

Neuronal behaviors: A control perspective

Guillaume Drion; Timothy O'Leary; Julie Dethier; Alessio Franci; Rodolphe Sepulchre

The purpose of this tutorial is to introduce and analyze models of neurons from a control perspective and to show how recently developed analytical tools help to address important biological questions. A first objective is to review the basic modeling principles of neurophysiology in which neurons are modeled as equivalent nonlinear electrical circuits that capture their excitable properties. The specific architecture of the models is key to the tractability of their analysis: in spite of their high-dimensional and nonlinear nature, the model properties can be understood in terms of few canonical positive and negative feedback motifs localized in distinct timescales. We use this insight to shed light on a key problem in experimental neurophysiology, the challenge of understanding the sensitivity of neuronal behaviors to underlying parameters in empirically-derived models. Finally, we show how sensitivity analysis of neuronal excitability relates to robustness and regulation of neuronal behaviors.

Collaboration


Dive into the Guillaume Drion's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alessio Franci

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge