Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Guillaume E. Desanti is active.

Publication


Featured researches published by Guillaume E. Desanti.


Journal of Immunology | 2009

Checkpoints in the Development of Thymic Cortical Epithelial Cells

Saba Shakib; Guillaume E. Desanti; William E. Jenkinson; Sonia M. Parnell; Eric J. Jenkinson; Graham Anderson

In the thymus, interactions between immature thymocytes and thymic epithelial cells (TECs) regulate the development and selection of self-tolerant MHC-restricted T cells. Despite the importance of cortical (cTEC) and medullary (mTEC) thymic epithelial cells in fostering T cell production, events in TEC development are still unclear. Although precursor-product relationships during mTEC development have been reported, and some genetic regulators of mTEC development have been identified, stages in cTEC development occurring downstream of recently identified bipotent cTEC/mTEC progenitors remain poorly defined. In this study, we combine analysis of differentiation, proliferation, and gene expression of TECs in the murine thymus, that has enabled us to identify cTEC progenitors, define multiple stages in cTEC development, and identify novel checkpoints in development of the cTEC lineage. We show an essential requirement for FoxN1 in the initial development of cTEC from bipotent progenitors, and demonstrate a stage-specific requirement for CD4−8− thymocytes in later stages of cTEC development. Collectively, our data establish a program of cTEC development that should provide insight into the formation and function of the thymic cortex for T cell development.


Immunity | 2012

Rank Signaling Links the Development of Invariant γδ T Cell Progenitors and Aire+ Medullary Epithelium

Natalie A. Roberts; Andrea J. White; William E. Jenkinson; Gleb Turchinovich; Kyoko Nakamura; David R. Withers; Fiona M. McConnell; Guillaume E. Desanti; Cécile Bénézech; Sonia M. Parnell; Adam F. Cunningham; Magdalena Paolino; Josef M. Penninger; Anna Katharina Simon; Takeshi Nitta; Izumi Ohigashi; Yousuke Takahama; Jorge Caamano; Adrian Hayday; Peter J. L. Lane; Eric J. Jenkinson; Graham Anderson

Summary The thymic medulla provides a specialized microenvironment for the negative selection of T cells, with the presence of autoimmune regulator (Aire)-expressing medullary thymic epithelial cells (mTECs) during the embryonic-neonatal period being both necessary and sufficient to establish long-lasting tolerance. Here we showed that emergence of the first cohorts of Aire+ mTECs at this key developmental stage, prior to αβ T cell repertoire selection, was jointly directed by Rankl+ lymphoid tissue inducer cells and invariant Vγ5+ dendritic epidermal T cell (DETC) progenitors that are the first thymocytes to express the products of gene rearrangement. In turn, generation of Aire+ mTECs then fostered Skint-1-dependent, but Aire-independent, DETC progenitor maturation and the emergence of an invariant DETC repertoire. Hence, our data attributed a functional importance to the temporal development of Vγ5+ γδ T cells during thymus medulla formation for αβ T cell tolerance induction and demonstrated a Rank-mediated reciprocal link between DETC and Aire+ mTEC maturation.


Journal of Immunology | 2012

Cutting Edge: Lymphoid Tissue Inducer Cells Maintain Memory CD4 T Cells within Secondary Lymphoid Tissue

David R. Withers; Fabrina Gaspal; Emma C. Mackley; Clare L. Marriott; Ewan A. Ross; Guillaume E. Desanti; Natalie A. Roberts; Andrea J. White; Adriana Flores-Langarica; Fiona M. McConnell; Graham Anderson; Peter J. L. Lane

Phylogeny shows that CD4 T cell memory and lymph nodes coevolved in placental mammals. In ontogeny, retinoic acid orphan receptor (ROR)γ-dependent lymphoid tissue inducer (LTi) cells program the development of mammalian lymph nodes. In this study, we show that although primary CD4 T cell expansion is normal in RORγ-deficient mice, the persistence of memory CD4 T cells is RORγ-dependent. Furthermore, using bone marrow chimeric mice we demonstrate that LTi cells are the key RORγ-expressing cell type sufficient for memory CD4 T cell survival in the absence of persistent Ag. This effect was specific for CD4 T cells, as memory CD8 T cells survived equally well in the presence or absence of LTi cells. These data demonstrate a novel role for LTi cells, archetypal members of the innate lymphoid cell family, in supporting memory CD4 T cell survival in vivo.


Immunity | 2012

Lymphotoxin-β Receptor Signaling through NF-κB2-RelB Pathway Reprograms Adipocyte Precursors as Lymph Node Stromal Cells

Cécile Bénézech; Emma Mader; Guillaume E. Desanti; Mahmood Khan; Kyoko Nakamura; Andrea J. White; Carl F. Ware; Graham Anderson; Jorge Caamano

Lymph node development during embryogenesis involves lymphotoxin-β receptor engagement and subsequent differentiation of a poorly defined population of mesenchymal cells into lymphoid tissue organizer cells. Here, we showed that embryonic mesenchymal cells with characteristics of adipocyte precursors present in the microenvironment of lymph nodes gave rise to lymph node organizer cells. Signaling through the lymphotoxin-β receptor controlled the fate of adipocyte precursor cells by blocking adipogenesis and instead promoting lymphoid tissue stromal cell differentiation. This effect involved activation of the NF-κB2-RelB signaling pathway and inhibition of the expression of the key adipogenic factors Pparγ and Cebpα. In vivo organogenesis assays show that embryonic and adult adipocyte precursor cells can migrate into newborn lymph nodes and differentiate into a variety of lymph node stromal cells. Thus, we propose that adipose tissues act as a source of lymphoid stroma for lymph nodes and other lymphoid structures associated with fat.


Blood | 2014

CLEC-2 is required for development and maintenance of lymph nodes.

Cécile Bénézech; Saba Nayar; Brenda A. Finney; David R. Withers; Kate Lowe; Guillaume E. Desanti; Clare L. Marriott; Steve P. Watson; Jorge Caamano; Christopher D. Buckley; Francesca Barone

The importance of CLEC-2, a natural ligand/receptor for Gp38/Podoplanin, in the formation of the lymphatic vasculature has recently been demonstrated. As the development and maintenance of lymph nodes (LNs) is dependent on the formation of the lymphatic vasculature and the differentiation of Gp38/Podoplanin(+) stromal cells, we investigated the role of CLEC-2 in lymphoneogenesis and LN homeostasis. Using constitutive Clec1b(-/-) mice, we showed that while CLEC-2 was not necessary for initiation of the LN anlage, it was required at late stages of development. Constitutive deletion of CLEC-2 induced a profound defect in lymphatic endothelial cell proliferation, resulting in lack of LNs at birth. In contrast, conditional deletion of CLEC-2 in the megakaryocyte/platelet lineage in Clec1b(fl/fl)PF4-Cre mice led to the development of blood-filled LNs and fibrosis, in absence of a proliferative defect of the lymphatic endothelial compartment. This phenotype was also observed in chimeric mice reconstituted with Clec1b(fl/fl)PF4-Cre bone marrow, indicating that CLEC-2 expression in platelets was required for LN integrity. We demonstrated that LNs of Clec1b(fl/fl)PF4-Cre mice are able to sustain primary immune responses but show a defect in immune cell recirculation after repeated immunizations, thus suggesting CLEC-2 as target in chronic immune response.


Journal of Immunology | 2012

Developmentally Regulated Availability of RANKL and CD40 Ligand Reveals Distinct Mechanisms of Fetal and Adult Cross-Talk in the Thymus Medulla

Guillaume E. Desanti; Jennifer E. Cowan; Song Baik; Sonia M. Parnell; Andrea J. White; Josef M. Penninger; Peter J. L. Lane; Eric J. Jenkinson; William E. Jenkinson; Graham Anderson

T cell tolerance in the thymus is a key step in shaping the developing T cell repertoire. Thymic medullary epithelial cells play multiple roles in this process, including negative selection of autoreactive thymocytes, influencing thymic dendritic cell positioning, and the generation of Foxp3+ regulatory T cells. Previous studies show that medullary thymic epithelial cell (mTEC) development involves hemopoietic cross-talk, and numerous TNFR superfamily members have been implicated in this process. Whereas CD40 and RANK represent key examples, interplay between these receptors, and the individual cell types providing their ligands at both fetal and adult stages of thymus development, remain unclear. In this study, by analysis of the cellular sources of receptor activator for NF-κB ligand (RANKL) and CD40L during fetal and adult cross-talk in the mouse, we show that the innate immune cell system drives initial fetal mTEC development via expression of RANKL, but not CD40L. In contrast, cross-talk involving the adaptive immune system involves both RANKL and CD40L, with analysis of distinct subsets of intrathymic CD4+ T cells revealing a differential contribution of CD40L by conventional, but not Foxp3+ regulatory, T cells. We also provide evidence for a stepwise involvement of TNFRs in mTEC development, with CD40 upregulation induced by initial RANK signaling subsequently controlling proliferation within the mTEC compartment. Collectively, our findings show how multiple hemopoietic cell types regulate mTEC development through differential provision of RANKL/CD40L during ontogeny, revealing molecular differences in fetal and adult hemopoietic cross-talk. They also suggest a stepwise process of mTEC development, in which RANK is a master player in controlling the availability of other TNFR family members.


PLOS ONE | 2011

Helios Is Associated with CD4 T Cells Differentiating to T Helper 2 and Follicular Helper T Cells In Vivo Independently of Foxp3 Expression

Karine Serre; Cécile Bénézech; Guillaume E. Desanti; Saeeda Bobat; Kai-Michael Toellner; Roger Bird; Susan Chan; Philippe Kastner; Adam F. Cunningham; Ian C. M. MacLennan; Elodie Mohr

Background Although in vitro IL-4 directs CD4 T cells to produce T helper 2 (Th2)-cytokines, these cytokines can be induced in vivo in the absence of IL-4-signalling. Thus, mechanism(s), different from the in vitro pathway for Th2-induction, contribute to in vivo Th2-differentiation. The pathway for in vivo IL-4-independent Th2-differentiation has yet to be characterized. Findings Helios (ikzf2), a member of the Ikaros transcription regulator family, is expressed in thymocytes and some antigen-matured T cells as well as in regulatory T cells. It has been proposed that Helios is a specific marker for thymus-derived regulatory T cells. Here, we show that mouse ovalbumin-specific CD4 (OTII) cells responding to alum-precipitated ovalbumin (alumOVA) upregulate Th2 features - GATA-3 and IL-4 - as well as Helios mRNA and protein. Helios is also upregulated in follicular helper T (TFh) cells in this response. By contrast, OTII cells responding to the Th1 antigen - live attenuated ovalbumin-expressing Salmonella - upregulate Th1 features - T-bet and IFN-γ - but not Helios. In addition, CD4 T cells induced to produce Th2 cytokines in vitro do not express Helios. The kinetics of Helios mRNA and protein induction mirrors that of GATA-3. The induction of IL-4, IL-13 and CXCR5 by alumOVA requires NF-κB1 and this is also needed for Helios upregulation. Importantly, Helios is induced in Th2 and TFh cells without parallel upregulation of Foxp3. These findings suggested a key role for Helios in Th2 and TFh development in response to alum-protein vaccines. We tested this possibility using Helios-deficient OTII cells and found this deficiency had no discernable impact on Th2 and TFh differentiation in response to alumOVA. Conclusions Helios is selectively upregulated in CD4 T cells during Th2 and TFh responses to alum-protein vaccines in vivo, but the functional significance of this upregulation remains uncertain.


Arthritis Research & Therapy | 2016

Rheumatoid synovial fibroblasts differentiate into distinct subsets in the presence of cytokines and cartilage

Adam P. Croft; Amy Naylor; Jennifer L. Marshall; Debbie L. Hardie; Birgit Zimmermann; Jason D. Turner; Guillaume E. Desanti; Holly Adams; Adrian I. Yemm; Ulf Müller-Ladner; Jean-Michel Dayer; Elena Neumann; Andrew Filer; Christopher D. Buckley

BackgroundWe investigated two distinct synovial fibroblast populations that were located preferentially in the lining or sub-lining layers and defined by their expression of either podoplanin (PDPN) or CD248, and explored their ability to undergo self-assembly and transmigration in vivo.MethodsSynovial fibroblasts (SF) were cultured in vitro and phenotypic changes following stimulation with interleukin (IL)-1β, tumor necrosis factor (TNF)-α, and transforming growth factor (TGF)-β1 were examined. To examine the phenotype of SF in vivo, a severe combined immunodeficiency (SCID) human-mouse model of cartilage destruction was utilised.ResultsSF in the lining layer in rheumatoid arthritis (RA) expressed high levels of PDPN compared to the normal synovium, whereas CD248 expression was restricted to sub-lining layer cells. TNF-α or IL1 stimulation in vitro resulted in an increased expression of PDPN. In contrast, stimulation with TGF-β1 induced CD248 expression. In the SCID human-mouse model, rheumatoid SF recapitulated the expression of PDPN and CD248. Fibroblasts adjacent to cartilage expressed PDPN, and attached to, invaded, and degraded cartilage. PDPN+ CD248– SF preceded the appearance of PDPN– CD248+ cells in contralateral implants.ConclusionsWe have identified two distinct SF populations identified by expression of either PDPN or CD248 which are located within different anatomical compartments of the inflamed synovial membrane. These markers discriminate between SF subsets with distinct biological properties. As PDPN-expressing cells are associated with early fibroblast migration and cartilage erosion in vivo, we propose that PDPN-expressing cells may be an attractive therapeutic target in RA.


Journal of Immunology | 2012

Thymic Function Is Maintained during Salmonella-Induced Atrophy and Recovery

Ewan A. Ross; Ruth E. Coughlan; Adriana Flores-Langarica; Sian Lax; Julia Nicholson; Guillaume E. Desanti; Jennifer L. Marshall; Saeeda Bobat; Jessica Hitchcock; Andrea J. White; William E. Jenkinson; Mahmood Khan; Ian R. Henderson; Gareth G. Lavery; Christopher D. Buckley; Graham Anderson; Adam F. Cunningham

Thymic atrophy is a frequent consequence of infection with bacteria, viruses, and parasites and is considered a common virulence trait between pathogens. Multiple reasons have been proposed to explain this atrophy, including premature egress of immature thymocytes, increased apoptosis, or thymic shutdown to prevent tolerance to the pathogen from developing. The severe loss in thymic cell number can reflect an equally dramatic reduction in thymic output, potentially reducing peripheral T cell numbers. In this study, we examine the relationship between systemic Salmonella infection and thymic function. During infection, naive T cell numbers in peripheral lymphoid organs increase. Nevertheless, this occurs despite a pronounced thymic atrophy caused by viable bacteria, with a peak 50-fold reduction in thymocyte numbers. Thymic atrophy is not dependent upon homeostatic feedback from peripheral T cells or on regulation of endogenous glucocorticoids, as demonstrated by infection of genetically altered mice. Once bacterial numbers fall, thymocyte numbers recover, and this is associated with increases in the proportion and proliferation of early thymic progenitors. During atrophy, thymic T cell maturation is maintained, and single-joint TCR rearrangement excision circle analysis reveals there is only a modest fall in recent CD4+ thymic emigrants in secondary lymphoid tissues. Thus, thymic atrophy does not necessarily result in a matching dysfunctional T cell output, and thymic homeostasis can constantly adjust to systemic infection to ensure that naive T cell output is maintained.


European Journal of Immunology | 2009

Absence of thymus crosstalk in the fetus does not preclude hematopoietic induction of a functional thymus in the adult

Natalie A. Roberts; Guillaume E. Desanti; David R. Withers; Hamish R. Scott; William E. Jenkinson; Peter J. L. Lane; Eric J. Jenkinson; Graham Anderson

Cortical and medullary thymic epithelial cells provide essential signals for a normal programme of T‐cell development. Current models of thymus development suggest that thymocyte‐derived signals play an important role in establishing thymic microenvironments, a process termed thymus crosstalk. Studies on CD3εtg26 mice lacking intrathymic T‐cell progenitors provided evidence that normal development of the thymic cortex depends upon thymocyte‐derived signals. Importantly, the reported failure to effectively reconstitute adult CD3εtg26 mice raised the possibility that such crosstalk must occur within a developmental window, and that closure of this window during the postnatal period renders thymic epithelium refractory to crosstalk signals and unable to effectively impose T‐cell selection. We have re‐investigated the timing of provision of crosstalk in relation to development of functional thymic microenvironments. We show that transfer of either fetal precursors or adult T‐committed precursors into adult CD3εtg26 mice initiates key parameters of successful thymic reconstitution including thymocyte development and emigration, restoration of cortical and medullary epithelial architecture, and establishment of thymic tolerance mechanisms including maturation of Foxp3+ Treg and autoimmune regulator‐expressing medullary epithelium. Collectively, our data argue against a temporal window of thymocyte crosstalk, and instead demonstrates continued receptiveness of thymic epithelium for the formation of functionally competent thymic microenvironments.

Collaboration


Dive into the Guillaume E. Desanti's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Amy Naylor

University of Birmingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Atif Saghir

University of Birmingham

View shared research outputs
Top Co-Authors

Avatar

Adam P. Croft

University of Birmingham

View shared research outputs
Top Co-Authors

Avatar

Andrew Filer

University of Birmingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge