Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Guillaume Ferreira is active.

Publication


Featured researches published by Guillaume Ferreira.


Nature Neuroscience | 2014

The endocannabinoid system controls food intake via olfactory processes

Edgar Soria-Gómez; Luigi Bellocchio; Leire Reguero; Gabriel Lepousez; Claire Martin; Mounir Bendahmane; Sabine Ruehle; Floor Remmers; Tiffany Desprez; Isabelle Matias; Theresa Wiesner; Astrid Cannich; Antoine Nissant; Aya Wadleigh; Hans-Christian Pape; Anna Chiarlone; Carmelo Quarta; Danièle Verrier; Peggy Vincent; Federico Massa; Beat Lutz; Manuel Guzmán; Hirac Gurden; Guillaume Ferreira; Pierre-Marie Lledo; Pedro Grandes; Giovanni Marsicano

Hunger arouses sensory perception, eventually leading to an increase in food intake, but the underlying mechanisms remain poorly understood. We found that cannabinoid type-1 (CB1) receptors promote food intake in fasted mice by increasing odor detection. CB1 receptors were abundantly expressed on axon terminals of centrifugal cortical glutamatergic neurons that project to inhibitory granule cells of the main olfactory bulb (MOB). Local pharmacological and genetic manipulations revealed that endocannabinoids and exogenous cannabinoids increased odor detection and food intake in fasted mice by decreasing excitatory drive from olfactory cortex areas to the MOB. Consistently, cannabinoid agonists dampened in vivo optogenetically stimulated excitatory transmission in the same circuit. Our data indicate that cortical feedback projections to the MOB crucially regulate food intake via CB1 receptor signaling, linking the feeling of hunger to stronger odor processing. Thus, CB1 receptor–dependent control of cortical feedback projections in olfactory circuits couples internal states to perception and behavior.


Hippocampus | 2012

Juvenile, but not adult exposure to high-fat diet impairs relational memory and hippocampal neurogenesis in mice

Chloé Boitard; Nicole Etchamendy; Julie Sauvant; Agnès Aubert; Sophie Tronel; Sophie Layé; Guillaume Ferreira

Increased consumption of high‐fat diet (HFD) leads to obesity and adverse neurocognitive outcomes. Childhood and adolescence are important periods of brain maturation shaping cognitive function. These periods could consequently be particularly sensitive to the detrimental effects of HFD intake. In mice, juvenile and adulthood consumption of HFD induce similar morphometric and metabolic changes. However, only juvenile exposure to HFD abolishes relational memory flexibility, assessed after initial radial‐maze concurrent spatial discrimination learning, and decreases neurogenesis. Our results identify a critical period of development covering adolescence with higher sensitivity to HFD‐induced hippocampal dysfunction at both behavioral and cellular levels.


PLOS ONE | 2011

Cognitive and Emotional Alterations Are Related to Hippocampal Inflammation in a Mouse Model of Metabolic Syndrome

Anne-Laure Dinel; Caroline André; Agnès Aubert; Guillaume Ferreira; Sophie Layé; Nathalie Castanon

Converging clinical data suggest that peripheral inflammation is likely involved in the pathogenesis of the neuropsychiatric symptoms associated with metabolic syndrome (MetS). However, the question arises as to whether the increased prevalence of behavioral alterations in MetS is also associated with central inflammation, i.e. cytokine activation, in brain areas particularly involved in controlling behavior. To answer this question, we measured in a mouse model of MetS, namely the diabetic and obese db/db mice, and in their healthy db/+ littermates emotional behaviors and memory performances, as well as plasma levels and brain expression (hippocampus; hypothalamus) of inflammatory cytokines. Our results shows that db/db mice displayed increased anxiety-like behaviors in the open-field and the elevated plus-maze (i.e. reduced percent of time spent in anxiogenic areas of each device), but not depressive-like behaviors as assessed by immobility time in the forced swim and tail suspension tests. Moreover, db/db mice displayed impaired spatial recognition memory (hippocampus-dependent task), but unaltered object recognition memory (hippocampus-independent task). In agreement with the well-established role of the hippocampus in anxiety-like behavior and spatial memory, behavioral alterations of db/db mice were associated with increased inflammatory cytokines (interleukin-1β, tumor necrosis factor-α and interleukin-6) and reduced expression of brain-derived neurotrophic factor (BDNF) in the hippocampus but not the hypothalamus. These results strongly point to interactions between cytokines and central processes involving the hippocampus as important contributing factor to the behavioral alterations of db/db mice. These findings may prove valuable for introducing novel approaches to treat neuropsychiatric complications associated with MetS.


Brain Behavior and Immunity | 2014

Diet-induced obesity progressively alters cognition, anxiety-like behavior and lipopolysaccharide-induced depressive-like behavior: Focus on brain indoleamine 2,3-dioxygenase activation

Caroline André; Anne-Laure Dinel; Guillaume Ferreira; Sophie Layé; Nathalie Castanon

Obesity is associated with a high prevalence of mood symptoms and cognitive dysfunctions that emerges as significant risk factors for important health complications such as cardiovascular diseases and type 2 diabetes. It is therefore important to identify the dynamic of development and the pathophysiological mechanisms underlying these neuropsychiatric symptoms. Obesity is also associated with peripheral low-grade inflammation and increased susceptibility to immune-mediated diseases. Excessive production of proinflammatory cytokines and the resulting activation of the brain tryptophan catabolizing enzyme indoleamine 2,3-dioxygenase (IDO) have been shown to promote neurobehavioral complications, particularly depression. In that context, questions arise about the impact of diet-induced obesity on the onset of neuropsychiatric alterations and the increased susceptibility to immune-mediated diseases displayed by obese patients, particularly through brain IDO activation. To answer these questions, we used C57Bl/6 mice exposed to standard diet or western diet (WD; consisting of palatable energy-dense food) since weaning and for 20 weeks. We then measured inflammatory and behavioral responses to a systemic immune challenge with lipopolysaccharide (LPS) in experimental conditions known to alter cognitive and emotional behaviors independently of any motor impairment. We first showed that in absence of LPS, 9 weeks of WD is sufficient to impair spatial recognition memory (in the Y-maze). On the other hand, 18 weeks of WD increased anxiety-like behavior (in the elevated plus-maze), but did not affect depressive-like behavior (in the tail-suspension and forced-swim tests). However, 20 weeks of WD altered LPS-induced depressive-like behavior compared to LPS-treated lean mice and exacerbated hippocampal and hypothalamic proinflammatory cytokine expression and brain IDO activation. Taken together, these results show that WD exposure alters cognition and anxiety in unstimulated conditions and enhances activation of neurobiological mechanisms underlying depression after immune stimulation. They suggest therefore that obesity, and possibly obesity-associated inflammatory priming, may represent a vulnerability state to immune-mediated depressive symptoms.


PLOS ONE | 2009

Impaired Interleukin-1β and c-Fos Expression in the Hippocampus Is Associated with a Spatial Memory Deficit in P2X7 Receptor-Deficient Mice

Virginie F. Labrousse; Laurence Costes; Agnès Aubert; Muriel Darnaudéry; Guillaume Ferreira; Thierry Amédée; Sophie Layé

Recent evidence suggests that interleukin-1β (IL-1β), which was originally identified as a proinflammatory cytokine, is also required in the brain for memory processes. We have previously shown that IL-1β synthesis in the hippocampus is dependent on P2X7 receptor (P2X7R), which is an ionotropic receptor of ATP. To substantiate the role of P2X7R in both brain IL-1β expression and memory processes, we examined the induction of IL-1β mRNA expression in the hippocampus of wild-type (WT) and homozygous P2X7 receptor knockout mice (P2X7R−/−) following a spatial memory task. The spatial recognition task induced both IL-1β mRNA expression and c-Fos protein activation in the hippocampus of WT but not of P2X7R−/− mice. Remarkably, P2X7R−/− mice displayed spatial memory impairment in a hippocampal-dependant task, while their performances in an object recognition task were unaltered. Taken together, our results show that P2X7R plays a critical role in spatial memory processes and the associated hippocampal IL-1β mRNA synthesis and c-Fos activation.


The Journal of Neuroscience | 2015

Juvenile Obesity Enhances Emotional Memory and Amygdala Plasticity through Glucocorticoids

Chloé Boitard; Mouna Maroun; Frédéric Tantot; Amandine Cavaroc; Julie Sauvant; Alain R. Marchand; Sophie Layé; Lucile Capuron; Muriel Darnaudéry; Nathalie Castanon; Etienne Coutureau; Rose-Marie Vouimba; Guillaume Ferreira

In addition to metabolic and cardiovascular disorders, obesity is associated with adverse cognitive and emotional outcomes. Its growing prevalence during adolescence is particularly alarming since recent evidence indicates that obesity can affect hippocampal function during this developmental period. Adolescence is a decisive period for maturation of the amygdala and the hypothalamic–pituitary–adrenal (HPA) stress axis, both required for lifelong cognitive and emotional processing. However, little data are available on the impact of obesity during adolescence on amygdala function. Herein, we therefore evaluate in rats whether juvenile high-fat diet (HFD)-induced obesity alters amygdala-dependent emotional memory and whether it depends on HPA axis deregulation. Exposure to HFD from weaning to adulthood, i.e., covering adolescence, enhances long-term emotional memories as assessed by odor–malaise and tone–shock associations. Juvenile HFD also enhances emotion-induced neuronal activation of the basolateral complex of the amygdala (BLA), which correlates with protracted plasma corticosterone release. HFD exposure restricted to adulthood does not modify all these parameters, indicating adolescence is a vulnerable period to the effects of HFD-induced obesity. Finally, exaggerated emotional memory and BLA synaptic plasticity after juvenile HFD are alleviated by a glucocorticoid receptor antagonist. Altogether, our results demonstrate that juvenile HFD alters HPA axis reactivity leading to an enhancement of amygdala-dependent synaptic and memory processes. Adolescence represents a period of increased susceptibility to the effects of diet-induced obesity on amygdala function.


Neuron | 2015

Habenular CB1 Receptors Control the Expression of Aversive Memories

Edgar Soria-Gómez; Arnau Busquets-Garcia; Fei Hu; Amine Mehidi; Astrid Cannich; Liza Roux; Ines Louit; Lucille Alonso; Theresa Wiesner; François Georges; Danièle Verrier; Peggy Vincent; Guillaume Ferreira; Minmin Luo; Giovanni Marsicano

Expression of aversive memories is key for survival, but the underlying brain mechanisms are not fully understood. Medial habenular (MHb) axons corelease glutamate and acetylcholine onto target postsynaptic interpeduncular (IPN) neurons, but their role in aversive memories has not been addressed so far. We found that cannabinoid type 1 receptors (CB1R), key regulators of aversive responses, are present at presynaptic terminals of MHb neurons in the IPN. Conditional deletion of CB1R from MHb neurons reduces fear-conditioned freezing and abolishes conditioned odor aversion in mice, without affecting neutral or appetitively motivated memories. Interestingly, local inhibition of nicotinic, but not glutamatergic receptors in the target region IPN before retrieval, rescues these phenotypes. Finally, optogenetic electrophysiological recordings of MHb-to-IPN circuitry revealed that blockade of CB1R specifically enhances cholinergic, but not glutamatergic, neurotransmission. Thus, presynaptic CB1R control expression of aversive memories by selectively modulating cholinergic transmission at MHb synapses in the IPN.


Psychoneuroendocrinology | 2014

Lipopolysaccharide-induced brain activation of the indoleamine 2,3-dioxygenase and depressive-like behavior are impaired in a mouse model of metabolic syndrome.

Anne-Laure Dinel; Caroline André; Agnès Aubert; Guillaume Ferreira; Sophie Layé; Nathalie Castanon

Although peripheral low-grade inflammation has been associated with a high incidence of mood symptoms in patients with metabolic syndrome (MetS), much less is known about the potential involvement of brain activation of cytokines in that context. Recently we showed in a mouse model of MetS, namely the db/db mice, an enhanced hippocampal inflammation associated with increased anxiety-like behavior (Dinel et al., 2011). However, depressive-like behavior was not affected in db/db mice. Based on the strong association between depressive-like behavior and cytokine-induced brain activation of indoleamine 2,3-dioxygenase (IDO), the enzyme that metabolizes tryptophan along the kynurenine pathway, these results may suggest an impairment of brain IDO activation in db/db mice. To test this hypothesis, we measured the ability of db/db mice and their healthy db/+ littermates to enhance brain IDO activity and depressive-like behavior after a systemic immune challenge with lipopolysaccharide (LPS). Here we show that LPS (5 μg/mouse) significantly increased depressive-like behavior (increased immobility time in a forced-swim test, FST) 24h after treatment in db/+ mice, but not in db/db mice. Interestingly, db/db mice also displayed after LPS treatment blunted increase of brain kynurenine/tryptophan ratio compared to their db/+ counterparts, despite enhanced induction of hippocampal cytokine expression (interleukin-1β, tumor necrosis factor-α). Moreover, this was associated with an impaired effect of LPS on hippocampal expression of the brain-derived neurotrophic factor (BDNF) that contributes to mood regulation, including under inflammatory conditions. Collectively, these data indicate that the rise in brain tryptophan catabolism and depressive-like behavior induced by innate immune system activation is impaired in db/db mice. These findings could have relevance in improving the management and treatment of inflammation-related complications in MetS.


Psychoneuroendocrinology | 2015

Perinatal high-fat diet increases hippocampal vulnerability to the adverse effects of subsequent high-fat feeding

Amandine Lépinay; Thomas Larrieu; Corinne Joffre; Niyazi Acar; Iciar Gárate; Nathalie Castanon; Guillaume Ferreira; Bénédicte Langelier; Philippe Guesnet; Lionel Bretillon; Patricia Parnet; Sophie Layé; Muriel Darnaudéry

Epidemiological observations report an increase in fat consumption associated with low intake of n-3 relative to n-6 polyunsaturated fatty acids (PUFAs) in women of childbearing age. However, the impact of these maternal feeding habits on cognitive function in the offspring is unknown. This study aims to investigate the impact of early exposure to a high-fat diet (HFD) with an unbalanced n-6/n-3 PUFAs ratio on hippocampal function in adult rats. Furthermore, we explored the effects of perinatal HFD combined with exposure to HFD after weaning. Dams were fed a control diet (C, 12% of energy from lipids, n-6/n-3 PUFAs ratio: 5) or HFD (HF, 39% of energy from lipids, n-6/n-3 PUFAs ratio: 39) throughout gestation and lactation. At weaning, offspring were placed either on control (C-C, HF-C) or high-fat (HF-HF) diets. In adulthood, hippocampus-dependent memory was assessed using the water-maze task and potential hippocampal alterations were determined by studying PUFA levels, gene expression, neurogenesis and astrocyte morphology. Perinatal HFD induced long-lasting metabolic alterations and some changes in gene expression in the hippocampus, but had no effect on memory. In contrast, spatial memory was impaired in animals exposed to HFD during the perinatal period and maintained on this diet. HF-HF rats also exhibited low n-3 and high n-6 PUFA levels, decreased neurogenesis and downregulated expression of several plasticity-related genes in the hippocampus. To determine the contribution of the perinatal diet to the memory deficits reported in HF-HF animals, an additional experiment was conducted in which rats were only exposed to HFD starting at weaning (C-HF). Interestingly, memory performance in this group was similar to controls. Overall, our results suggest that perinatal exposure to HFD with an unbalanced n-6/n-3 ratio sensitizes the offspring to the adverse effects of subsequent high-fat intake on hippocampal function.


Frontiers in Behavioral Neuroscience | 2017

Palatable Hyper-Caloric Foods Impact on Neuronal Plasticity

Jean-Pascal Morin; Luis F. Rodríguez-Durán; Kioko Guzmán-Ramos; Claudia Perez-Cruz; Guillaume Ferreira; Sofía Díaz-Cintra; Gustavo Pacheco-López

Neural plasticity is an intrinsic and essential characteristic of the nervous system that allows animals “self-tuning” to adapt to their environment over their lifetime. Activity-dependent synaptic plasticity in the central nervous system is a form of neural plasticity that underlies learning and memory formation, as well as long-lasting, environmentally-induced maladaptive behaviors, such as drug addiction and overeating of palatable hyper-caloric (PHc) food. In western societies, the abundance of PHc foods has caused a dramatic increase in the incidence of overweight/obesity and related disorders. To this regard, it has been suggested that increased adiposity may be caused at least in part by behavioral changes in the affected individuals that are induced by the chronic consumption of PHc foods; some authors have even drawn attention to the similarity that exists between over-indulgent eating and drug addiction. Long-term misuse of certain dietary components has also been linked to chronic neuroimmune maladaptation that may predispose individuals to neurodegenerative conditions such as Alzheimer’s disease. In this review article, we discuss recent evidence that shows how consumption of PHc food can cause maladaptive neural plasticity that converts short-term ingestive drives into compulsive behaviors. We also discuss the neural mechanisms of how chronic consumption of PHc foods may alter brain function and lead to cognitive impairments, focusing on prenatal, childhood and adolescence as vulnerable neurodevelopmental stages to dietary environmental insults. Finally, we outline a societal agenda for harnessing permissive obesogenic environments.

Collaboration


Dive into the Guillaume Ferreira's collaboration.

Top Co-Authors

Avatar

Sophie Layé

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Agnès Aubert

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shauna L. Parkes

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge