Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Guillaume Galliero is active.

Publication


Featured researches published by Guillaume Galliero.


Journal of Chemical Physics | 2009

Interfacial properties of the Mie n−6 fluid: Molecular simulations and gradient theory results

Guillaume Galliero; Manuel M. Piñeiro; Bruno Mendiboure; Christelle Miqueu; Thomas Lafitte; David Bessières

In a first part, interfacial properties of a pure monoatomic fluid interacting through the Mie n-6 potential (n=8, 10, 12, and 20) have been studied using extensive molecular simulations. Monte Carlo and molecular dynamics simulations have been employed, using, respectively, the test area approach and the mechanic route. In order to yield reference values, simulations have been performed with a cutoff radius equal to 10sigma, which is shown to be sufficient to avoid long range corrections. It is shown that both approaches provide results consistent with each other. Using the molecular simulations results, it is demonstrated that a unique scaling law is able to provide an accurate estimation of the surface tension whatever the repulsive exponent n, even far from the critical point. Furthermore, it is shown that the surface tension of the Mie n-6 fluid is as well accurately described by a unique Parachors law. Density profiles are shown to be well represented by the tanh mean field profile, with slight deviations for the lowest temperatures and the smallest n. In addition, the interfacial width is shown to increase when n decreases (for a given reduced temperature) and to follow the usual scaling behavior for not too low temperature. In a second part, interfacial properties of the Mie n-6 fluid computed by the gradient theory, coupled with an equation of state based on the Barker-Henderson perturbation theory, have been compared with those obtained by molecular simulations. It is demonstrated that, even far from the critical point, the gradient theory is efficient to compute surface tensions and density profiles of this model fluid, provided the equation of state accurately model the phase behavior of the fluid involved (which is not the case for n=8 in this study).


Journal of Chemical Physics | 2011

Scaling of the viscosity of the Lennard-Jones chain fluid model, argon, and some normal alkanes

Guillaume Galliero; Christian Boned; Josefa Fernández

In this work, we have tested the efficiency of two scaling approaches aiming at relating shear viscosity to a single thermodynamic quantity in dense fluids, namely the excess entropy and the thermodynamic scaling methods. Using accurate databases, we have applied these approaches first to a model fluid, the flexible Lennard-Jones chain fluid (from the monomer to the hexadecamer), then to real fluids, such as argon and normal alkanes. To enlarge noticeably the range of thermodynamics conditions for which these scaling methods are applicable, we have shown that the use of the residual viscosity instead of the total viscosity is preferable in the scaling procedures. It has been found that both approaches, using the adequate scaling, are suitable for the Lennard-Jones chain fluid model for a wide range of thermodynamic conditions whatever the chain length when scaling law exponents and prefactors are adjusted for each chain length. Furthermore, these results were found to be well respected by the corresponding real fluids.


Journal of Chemical Physics | 2008

Thermodiffusion in model nanofluids by molecular dynamics simulations

Guillaume Galliero; S. Volz

In this work, a new algorithm is proposed to compute single particle (infinite dilution) thermodiffusion using nonequilibrium molecular dynamics simulations through the estimation of the thermophoretic force that applies on a solute particle. This scheme is shown to provide consistent results for model nanofluids in the liquid state (spherical nonmetallic nanoparticles+Lennard-Jones fluid) where it appears that thermodiffusion amplitude, as well as thermal conductivity, decreases with nanoparticle concentration. Then, by changing the nature of the nanoparticle (size, mass, and internal stiffness) and that of the solvent (quality and viscosity), various trends are exhibited. In all cases, the single particle thermodiffusion is positive, i.e., the nanoparticle tends to migrate toward the cold area. The single particle thermal diffusion coefficient is shown to be independent of the size of the nanoparticle (diameter of 0.8-4 nm), whereas it increases with the quality of the solvent and is inversely proportional to the viscosity of the fluid. In addition, this coefficient is shown to be independent of the mass of the nanoparticle and to increase with the stiffness of the nanoparticle internal bonds. Besides, for these configurations, the mass diffusion coefficient behavior appears to be consistent with a Stokes-Einstein-like law.


Fluid Phase Equilibria | 2003

Thermal diffusion sensitivity to the molecular parameters of a binary equimolar mixture, a non-equilibrium molecular dynamics approach

Guillaume Galliero; Bernard Duguay; Jean-Paul Caltagirone; François Montel

Abstract The goal of this study is to analyse how the thermal diffusion process is dependent on molecular parameters when describing a fluid mixture. To estimate the associated transport coefficient, which is the thermal diffusion factor αT, a non-equilibrium molecular dynamics algorithm has been applied on equimolar binary mixtures of Lennard–Jones (LJ) particles in supercritical conditions. Firstly, it is shown that this model is able to correctly estimate αT for simple alkane mixtures, provided there are a sufficient number of particles and long enough simulations. Then, using various mixing rules, the separate influences of the mass, the moment of inertia, the atomic diameter and the interaction strength have been studied. Results indicate that the molar fraction of the component, having the smallest mass and moment of inertia as well as the biggest radius and the strongest potential, tends to increase in the hot area. Elsewhere, simulations for various cross-interaction parameters show that αT is extremely sensitive to the intermolecular pair potential between unlike particles. Finally, results on methane/normal alkane mixtures indicate that a simple sum between the separate contributions provides a reliable evaluation of αT only when the molecular parameter ratios between the two components are close to 1.


Journal of the American Chemical Society | 2008

A new model for thermal diffusion: kinetic approach.

Pierre-Arnaud Artola; Bernard Rousseau; Guillaume Galliero

We present a new model for thermal diffusion, and we compare its results for both simple and real systems. This model is derived from a kinetic approach with explicit mass and chemical contributions. It involves self-diffusion activation free energies, following Prigogines original approach. We performed, furthermore, both equilibrium and nonequilibrium molecular dynamics evaluations in order to compute respectively the self-diffusion activation free enthalpies and the Soret coefficient when no experimental data were available. Our model is in very good agreement with simulation data on Lennard-Jones mixtures, and a good behavior is noted for the water-ethanol mixture, where the composition dependence at which the Soret coefficient changes its sign is predicted very accurately. Finally, we propose a new water-ethanol experiment at higher temperature in order to check the validity of our model.


Journal of Chemical Physics | 2010

Surface tension of short flexible Lennard-Jones chains: Corresponding states behavior

Guillaume Galliero

Molecular dynamics simulations of surface tensions of short flexible Lennard-Jones chains, composed of 2, 3, 4, and 5 segments, have been performed in this work. Using the simulation results, it is shown that the reduced surface tension depends only on the chain length and the reduced temperature. As a consequence, simple three parameters corresponding states using the acentric factor is shown to yield an excellent estimation of the reduced surface tension of the flexible Lennard-Jones chain fluid model. In addition, it has been noticed that the reduced surface tension of this fluid model is a unique function of the coexisting liquid and vapor reduced densities (i.e., there exist a universal Parachor behavior) for all chain lengths tested. When applied to real fluids, this universal behavior holds rather well for a large class of real species which can be nonspherical, nonlinear, and even polar. Only the surface tension of hydrogen-bonding compounds seems to largely deviate from this universal Parachor behavior. These interesting features of the surface tension, written in appropriate scaled forms, can probably be used to improve molecular models, in particular, those on which modern molecular based equations of state rely on.


Philosophical Magazine | 2003

On thermal diffusion in binary and ternary Lennard-Jones mixtures by non-equilibrium molecular dynamics

Guillaume Galliero; Bernard Duguay; Jean-Paul Caltagirone; François Montel

Molecular simulation appears to be an alternative to experiment for the estimation of transport and thermodynamics properties of fluid mixtures, which is of primary importance in the evaluation of the initial state of a petroleum reservoir. In this study, a non-equilibrium molecular dynamics algorithm has been applied to mixtures of Lennard-Jones spheres in order to compute the thermal diffusion process. The pertinence of such an approach to simple alkane mixtures is shown. The separate influences on the thermal diffusion of the molecular features in binary equimolar mixtures are then summarized. Simulations on binary non-equimolar mixtures have been performed as well. The results indicate an increase in the thermal diffusion process with increasing molar fraction of the lightest component. Moreover, this increase is enhanced with increasing difference in the number of carbons between the two alkanes. Then, a simple method, which yields results consistent with simulations, is proposed to predict thermal diffusion for the whole range of molar fractions starting only from the equimolar value. Finally, for ternary mixtures, the law of the corresponding states is shown to be valid when the appropriate mixing rules are applied, which allows the estimation of thermal diffusion in such mixtures from equivalent binary mixtures.


Journal of Physical and Chemical Reference Data | 2013

Reference Correlation of the Viscosity of Squalane from 273 to 373 K at 0.1 MPa

María J. P. Comuñas; Xavier Paredes; Félix M. Gaciño; Josefa Fernández; Jean-Patrick Bazile; Christian Boned; Jean-Luc Daridon; Guillaume Galliero; Jérôme Pauly; Kenneth R. Harris; Marc J. Assael; Sofia K. Mylona

The paper presents a new reference correlation for the viscosity of squalane at 0.1 MPa. The correlation should be valuable as it is the first to cover a moderately high viscosity range, from 3 to 118 mPa s. It is based on new viscosity measurements carried out for this work, as well as other critically evaluated experimental viscosity data from the literature. The correlation is valid from 273 to 373 K at 0.1 MPa. The average absolute percentage deviation of the fit is 0.67, and the expanded uncertainty, with a coverage factor k = 2, is 1.5%.


Journal of Physical and Chemical Reference Data | 2014

Reference Correlations for the Density and Viscosity of Squalane from 273 to 473 K at Pressures to 200 MPa

Sofia K. Mylona; Marc J. Assael; María J. P. Comuñas; Xavier Paredes; Félix M. Gaciño; Josefa Fernández; Jean Patrick Bazile; Christian Boned; Jean Luc Daridon; Guillaume Galliero; Jérôme Pauly; Kenneth R. Harris

This paper presents new reference correlations for both the density and viscosity of squalane at high pressure. These correlations are based on critically evaluated experimental data taken from the literature. In the case of the density, the correlation, based on the Tait equation, is valid from 273 to 473 K at pressures to 200 MPa. At 0.1 MPa, it has an average absolute deviation of 0.03%, a bias of −0.01%, and an expanded uncertainty (at the 95% confidence level) of 0.06%. Over the whole range of pressures, the density correlation has an average absolute deviation of 0.05%, a bias of −0.004%, and an expanded uncertainty (at the 95% confidence level) of 0.18%. In the case of the viscosity, two correlations are presented, one a function of density and temperature, based on the Assael-Dymond model, and the other a function of temperature and pressure, based on a modified Vogel-Fulcher-Tammann equation. The former is slightly superior to the latter at high temperatures (above 410 K), whereas the reverse is ...


Journal of Chemical Physics | 2007

Thermodynamic properties of the Mie n-6 fluid: a comparison between statistical associating fluid theory of variable range approach and molecular dynamics results.

Guillaume Galliero; Thomas Lafitte; David Bessières; Christian Boned

Molecular dynamics (MD) simulations of direct and derivative thermodynamic properties of the Mie n-6 fluid (n=8, 10, and 12) have been performed for liquid to supercritical states. Using the results, an in depth test of the monomer-monomer interaction estimation of a recently derived statistical associating fluid theory of variable range (SAFT-VR) equation of state [Lafitte et al., J. Chem. Phys., 124, 024509 (2006)] has been carried out based on the Mie n-6 potential. For pure fluids, using an appropriate scaling, MD simulations show that density and isometric heat capacity are nearly independent of n, whereas sound velocity and thermal pressure coefficient tend to increase with n. In addition, the results show that predictions provided by the equation of state are consistent with those coming from MD and catch correctly the trends of each property with n except for the heat capacity. The comparison is next extended to binary mixtures with components differing only in the value of the n parameter and which demonstrate the reliability of the scheme (MX1b) used by Lafitte et al. to deal with this parameter in the SAFT-VR equation of state. In addition, a new empirical one-fluid approximation of the n parameter is proposed thanks to MD simulations, which very favorably compare with the one-fluid model on n previously proposed in the literature. The consistency of this approximation is addressed by making use of it in combination with the SAFT-VR Mie equation of state. It is shown that using such an approach, which is easier to handle than the MX1b one, yields slightly improved results compared to those of the MX1b.

Collaboration


Dive into the Guillaume Galliero's collaboration.

Top Co-Authors

Avatar

Christian Boned

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Antoine Baylaucq

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Hai Hoang

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Jean-Patrick Bazile

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Romain Vermorel

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Josefa Fernández

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge