Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Guillaume Herbet is active.

Publication


Featured researches published by Guillaume Herbet.


Brain | 2014

Probabilistic map of critical functional regions of the human cerebral cortex: Broca’s area revisited

Matthew C. Tate; Guillaume Herbet; Sylvie Moritz-Gasser; Joseph Euzebe Tate; Hugues Duffau

The organization of basic functions of the human brain, particularly in the right hemisphere, remains poorly understood. Recent advances in functional neuroimaging have improved our understanding of cortical organization but do not allow for direct interrogation or determination of essential (versus participatory) cortical regions. Direct cortical stimulation represents a unique opportunity to provide novel insights into the functional distribution of critical epicentres. Direct cortical stimulation (bipolar, 60 Hz, 1-ms pulse) was performed in 165 consecutive patients undergoing awake mapping for resection of low-grade gliomas. Tasks included motor, sensory, counting, and picture naming. Stimulation sites eliciting positive (sensory/motor) or negative (speech arrest, dysarthria, anomia, phonological and semantic paraphasias) findings were recorded and mapped onto a standard Montreal Neurological Institute brain atlas. Montreal Neurological Institute-space functional data were subjected to cluster analysis algorithms (K-means, partition around medioids, hierarchical Ward) to elucidate crucial network epicentres. Sensorimotor function was observed in the pre/post-central gyri as expected. Articulation epicentres were also found within the pre/post-central gyri. However, speech arrest localized to ventral premotor cortex, not the classical Brocas area. Anomia/paraphasia data demonstrated foci not only within classical Wernickes area but also within the middle and inferior frontal gyri. We report the first bilateral probabilistic map for crucial cortical epicentres of human brain functions in the right and left hemispheres, including sensory, motor, and language (speech, articulation, phonology and semantics). These data challenge classical theories of brain organization (e.g. Brocas area as speech output region) and provide a distributed framework for future studies of neural networks.


Frontiers in Systems Neuroscience | 2013

Toward a pluri-component, multimodal, and dynamic organization of the ventral semantic stream in humans: lessons from stimulation mapping in awake patients.

Hugues Duffau; Guillaume Herbet; Sylvie Moritz-Gasser

For many decades, neural basis underlying cognitive functions was conceived in a localizationist framework. Owing to the development of connectomics, an alternative hodotopical account was proposed, in which brain functions are sub-served by the interactions of large-scale distributed and parallel subnetworks (Catani, 2007; de Benedictis and Duffau, 2011). In this setting, the processing of visual information is divided in a dorsal stream dedicated to the analysis of the spatial position (“where”) and in a ventral stream specialized in object identification (“what”; Underleider and Haxby, 1994). By analogy, a dual-stream model for auditory language processing was suggested, with a dorsal stream involved in mapping sound to articulation and a ventral stream involved in mapping sound to meaning (Hickok and Poeppel, 2004). Nonetheless, the neural structures supporting the ventral route is still controversial. We have recently proposed a new model of language, in which the subcortical anatomical constraints have been incorporated (Duffau et al., 2013): beyond a well-recognized dorsal phonological/articulatory stream underlain by the superior longitudinal fascicle, the neuroanatomy subserving a parallel ventral stream involved in multimodal semantics was described. Here, our purpose is to detail the dynamic functional anatomy of this multi-component ventral route, constituted by direct and indirect pathways (explaining a possible compensation following brain injury) and implied in pluri-modal semantic processes—i.e., in verbal and non-verbal comprehension, control and noetic consciousness.


Brain | 2014

Inferring a dual-stream model of mentalizing from associative white matter fibres disconnection

Guillaume Herbet; Gilles Lafargue; François Bonnetblanc; Sylvie Moritz-Gasser; Nicolas Menjot de Champfleur; Hugues Duffau

In the field of cognitive neuroscience, it is increasingly accepted that mentalizing is subserved by a complex frontotemporoparietal cortical network. Some researchers consider that this network can be divided into two distinct but interacting subsystems (the mirror system and the mentalizing system per se), which respectively process low-level, perceptive-based aspects and high-level, inference-based aspects of this sociocognitive function. However, evidence for this type of functional dissociation in a given neuropsychological population is currently lacking and the structural connectivities of the two mentalizing subnetworks have not been established. Here, we studied mentalizing in a large sample of patients (n = 93; 46 females; age range: 18-65 years) who had been resected for diffuse low-grade glioma-a rare tumour that migrates preferentially along associative white matter pathways. This neurological disorder constitutes an ideal pathophysiological model in which to study the functional anatomy of associative pathways. We mapped the location of each patients resection cavity and residual lesion infiltration onto the Montreal Neurological Institute template brain and then performed multilevel lesion analyses (including conventional voxel-based lesion-symptom mapping and subtraction lesion analyses). Importantly, we estimated each associative pathways degree of disconnection (i.e. the degree of lesion infiltration) and built specific hypotheses concerning the connective anatomy of the mentalizing subnetworks. As expected, we found that impairments in mentalizing were mainly related to the disruption of right frontoparietal connectivity. More specifically, low-level and high-level mentalizing accuracy were correlated with the degree of disconnection in the arcuate fasciculus and the cingulum, respectively. To the best of our knowledge, our findings constitute the first experimental data on the structural connectivity of the mentalizing network and suggest the existence of a dual-stream hodological system. Our results may lead to a better understanding of disorders that affect social cognition, especially in neuropathological conditions characterized by atypical/aberrant structural connectivity, such as autism spectrum disorders.


Human Brain Mapping | 2013

Subcortical electrostimulation to identify network subserving motor control

Philippe Schucht; Sylvie Moritz-Gasser; Guillaume Herbet; Andreas Raabe; Hugues Duffau

Objectives: Recent anatomical–functional studies have transformed our understanding of cerebral motor control away from a hierarchical structure and toward parallel and interconnected specialized circuits. Subcortical electrical stimulation during awake surgery provides a unique opportunity to identify white matter tracts involved in motor control. For the first time, this study reports the findings on motor modulatory responses evoked by subcortical stimulation and investigates the cortico‐subcortical connectivity of cerebral motor control. Experimental design: Twenty‐one selected patients were operated while awake for frontal, insular, and parietal diffuse low‐grade gliomas. Subcortical electrostimulation mapping was used to search for interference with voluntary movements. The corresponding stimulation sites were localized on brain schemas using the anterior and posterior commissures method. Principal observations: Subcortical negative motor responses were evoked in 20/21 patients, whereas acceleration of voluntary movements and positive motor responses were observed in three and five patients, respectively. The majority of the stimulation sites were detected rostral of the corticospinal tract near the vertical anterior‐commissural line, and additional sites were seen in the frontal and parietal white matter. Conclusions: The diverse interferences with motor function resulting in inhibition and acceleration imply a modulatory influence of the detected fiber network. The subcortical stimulation sites were distributed veil‐like, anterior to the primary motor fibers, suggesting descending pathways originating from premotor areas known for negative motor response characteristics. Further stimulation sites in the parietal white matter as well as in the anterior arm of the internal capsule indicate a large‐scale fronto‐parietal motor control network. Hum Brain Mapp 34:3023–3030, 2013.


Brain | 2016

Mapping neuroplastic potential in brain-damaged patients

Guillaume Herbet; Maxime Maheu; Emanuele Costi; Gilles Lafargue; Hugues Duffau

It is increasingly acknowledged that the brain is highly plastic. However, the anatomic factors governing the potential for neuroplasticity have hardly been investigated. To bridge this knowledge gap, we generated a probabilistic atlas of functional plasticity derived from both anatomic magnetic resonance imaging results and intraoperative mapping data on 231 patients having undergone surgery for diffuse, low-grade glioma. The atlas includes detailed level of confidence information and is supplemented with a series of comprehensive, connectivity-based cluster analyses. Our results show that cortical plasticity is generally high in the cortex (except in primary unimodal areas and in a small set of neural hubs) and rather low in connective tracts (especially associative and projection tracts). The atlas sheds new light on the topological organization of critical neural systems and may also be useful in predicting the likelihood of recovery (as a function of lesion topology) in various neuropathological conditions-a crucial factor in improving the care of brain-damaged patients.


Human Brain Mapping | 2014

Limited plastic potential of the left ventral premotor cortex in speech articulation: Evidence From intraoperative awake mapping in glioma patients

Kim van Geemen; Guillaume Herbet; Sylvie Moritz-Gasser; Hugues Duffau

Objectives: Despite previous lesional and functional neuroimaging studies, the actual role of the left ventral premotor cortex (vPMC), i.e., the lateral part of the precentral gyrus, is still poorly known. Experimental design:We report a series of eight patients with a glioma involving the left vPMC, who underwent awake surgery with intraoperative cortical and subcortical language mapping. The function of the vPMC, its subcortical connections, and its reorganization potential are investigated in the light of surgical findings and language outcome after resection. Principal observations: Electrostimulation of both the vPMC and subcortical white matter tract underneath the vPMC, that is, the anterior segment of the lateral part of the superior longitudinal fascicle (SLF), induced speech production disturbances with anarthria in all cases. Moreover, although some degrees of redistribution of the vPMC have been found in four patients, allowing its partial resection with no permanent speech disorders, this area was nonetheless still detected more medially in the precentral gyrus in the eight patients, despite its invasion by the glioma. Moreover, a direct connection of the vPMC with the SLF was preserved in all cases. Conclusions: Our original data suggest that the vPMC plays a crucial role in the speech production network and that its plastic potential is limited. We propose that this limitation is due to an anatomical constraint, namely the necessity for the left vPMC to remain connected to the lateral SLF. Beyond fundamental implications, such knowledge may have clinical applications, especially in surgery for tumors involving this cortico‐subcortical circuit. Hum Brain Mapp 35:1587–1596, 2014.


Human Brain Mapping | 2014

Disruption of Bimanual Movement by Unilateral Subcortical Electrostimulation

Fabien Rech; Guillaume Herbet; Sylvie Moritz-Gasser; Hugues Duffau

Cortical areas involved in bimanual coordination have been regularly studied by functional neuroimaging and electroencephalography. However, the subcortical connectivity underlying this complex function has received less attention. Here, we used the technique of direct electrostimulation in awake patients who underwent surgery for brain glioma, with the goal to investigate the white matter pathways subserving bimanual coordination.


World Neurosurgery | 2015

Low Rate of Intraoperative Seizures During Awake Craniotomy in a Prospective Cohort with 374 Supratentorial Brain Lesions: Electrocorticography Is Not Mandatory

Julien Boetto; Luc Bertram; Gérard Moulinié; Guillaume Herbet; Sylvie Moritz-Gasser; Hugues Duffau

OBJECTIVE Awake craniotomy (AC) in brain lesions has allowed an improvement of both oncologic and functional results. However, intraoperative seizures (IOSs) were reported as a cause of failure of AC. Here, we analyze the incidence, risk factors, and consequences of IOSs in a prospective cohort of 374 ACs without electrocorticography (ECoG). METHODS We performed a prospective study including all patients who underwent AC for an intra-axial supratentorial cerebral lesion from 2009-2014 in our department. Occurrence of IOS was analyzed with respect to medical and epilepsy history, tumor characteristics, operative technique, and postoperative outcomes. RESULTS The study comprised 374 patients with a major incidence of low-grade glioma (86%). Most of the patients (83%) had epilepsy history before surgery (20% had intractable seizures). Preoperative mean Karnofsky performance scale (KPS) score was 91. IOSs occurred in 13 patients (3.4%). All IOSs were partial seizures, which quickly resolved by irrigation with cold Ringer lactate. No procedure failed because of IOS, and the rate of aborted AC whatever the cause was nil. Mean stimulation current intensity for cortical and subcortical mapping was 2.25 ± 0.6 mA. Presurgical refractory epilepsy was not associated with a higher incidence of IOS. Three months after surgery, no patients had severe or disabling permanent worsening, even within the IOS group (mean KPS score of 93.7). CONCLUSIONS AC for intra-axial brain lesion can be safely and reproducibly achieved without ECoG, with a low rate of IOS and excellent functional results, even in patients with preoperative intractable epilepsy.


Neuropsychologia | 2014

Disrupting posterior cingulate connectivity disconnects consciousness from the external environment.

Guillaume Herbet; Gilles Lafargue; Nicolas Menjot de Champfleur; Sylvie Moritz-Gasser; Emmanuelle Le Bars; François Bonnetblanc; Hugues Duffau

Neurophysiological and neuroimaging studies including both patients with disorders of consciousness and healthy subjects with modified states of consciousness suggest a crucial role of the medial posteroparietal cortex in conscious information processing. However no direct neuropsychological evidence supports this hypothesis and studies including patients with restricted lesions of this brain region are almost non-existent. Using direct intraoperative electrostimulations, we showed in a rare patient that disrupting the subcortical connectivity of the left posterior cingulate cortex (PCC) reliably induced a breakdown in conscious experience. This acute phenomenon was mainly characterized by a transient behavioral unresponsiveness with loss of external connectedness. In all cases, when he regained consciousness, the patient described himself as in dream, outside the operating room. This finding suggests that functional integrity of the PPC connectivity is necessary for maintaining consciousness of external environment.


Human Brain Mapping | 2015

New insights into the neural network mediating reading processes provided by cortico-subcortical electrical mapping.

Ilyess Zemmoura; Guillaume Herbet; Sylvie Moritz-Gasser; Hugues Duffau

To ascertain the neural network mediating reading using intraoperative electrostimulation.

Collaboration


Dive into the Guillaume Herbet's collaboration.

Top Co-Authors

Avatar

Hugues Duffau

University of Montpellier

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David Guiraud

University of Montpellier

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alain Bonafe

University of Montpellier

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge