Guillaume Majeau-Bettez
Norwegian University of Science and Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Guillaume Majeau-Bettez.
Environmental Science & Technology | 2011
Guillaume Majeau-Bettez; Troy R. Hawkins; Anders Hammer Strømman
This study presents the life cycle assessment (LCA) of three batteries for plug-in hybrid and full performance battery electric vehicles. A transparent life cycle inventory (LCI) was compiled in a component-wise manner for nickel metal hydride (NiMH), nickel cobalt manganese lithium-ion (NCM), and iron phosphate lithium-ion (LFP) batteries. The battery systems were investigated with a functional unit based on energy storage, and environmental impacts were analyzed using midpoint indicators. On a per-storage basis, the NiMH technology was found to have the highest environmental impact, followed by NCM and then LFP, for all categories considered except ozone depletion potential. We found higher life cycle global warming emissions than have been previously reported. Detailed contribution and structural path analyses allowed for the identification of the different processes and value-chains most directly responsible for these emissions. This article contributes a public and detailed inventory, which can be easily be adapted to any powertrain, along with readily usable environmental performance assessments.
Environmental Science & Technology | 2011
Guillaume Majeau-Bettez; Anders Hammer Strømman; Edgar G. Hertwich
Life cycle assessments (LCA) and environmentally extended input-output (EEIO) analyses both strive to account for direct and indirect environmental impacts of goods and services. Different methods have been developed to hybridize these two techniques and minimize the impact of their respective shortcomings on final assessments. These weaknesses, however, have not been extensively studied in a quantitative manner, especially not for complete LCA and EEIO databases. To this end, we jointly analyzed process-based and input-output-based data sets. We first evaluated their complementarity. Though the LCA data was more detailed overall, some sectors of the economy were more precisely represented in the EEIO database. We then contrasted the representation of the different economic sectors in the LCA database with the economic, environmental, and structural importance of these sectors. The weakness of the correlation results led us to conclude that process-inventory efforts have not been systematically directed at the most important sectors of the economy. The LCA data was also used to evaluate the sensitivity of EEIO data to aggregation uncertainty. This sensitivity proved highly inhomogeneous. We conclude the presence of important research inefficiencies stemming from the lack of hybrid perspective in the compilation of LCA and EEIO data.
Journal of Industrial Ecology | 2014
Linda Ager-Wick Ellingsen; Guillaume Majeau-Bettez; Bhawna Singh; Akhilesh Kumar Srivastava; Lars Ole Valøen; Anders Hammer Strømman
Electric vehicles (EVs) have no tailpipe emissions, but the production of their batteries leads to environmental burdens. In order to avoid problem shifting, a life cycle perspective should be applied in the environmental assessment of traction batteries. The aim of this study was to provide a transparent inventory for a lithium‐ion nickel‐cobalt‐manganese traction battery based on primary data and to report its cradle‐to‐gate impacts. The study was carried out as a process‐based attributional life cycle assessment. The environmental impacts were analyzed using midpoint indicators. The global warming potential of the 26.6 kilowatt‐hour (kWh), 253‐kilogram battery pack was found to be 4.6 tonnes of carbon dioxide equivalents. Regardless of impact category, the production impacts of the battery were caused mainly by the production chains of battery cell manufacture, positive electrode paste, and negative current collector. The robustness of the study was tested through sensitivity analysis, and results were compared with preceding studies. Sensitivity analysis indicated that the most effective approach to reducing climate change emissions would be to produce the battery cells with electricity from a cleaner energy mix. On a per‐kWh basis, cradle‐to‐gate greenhouse gas emissions of the battery were within the range of those reported in preceding studies. Contribution and structural path analysis allowed for identification of the most impact‐intensive processes and value chains. This article provides an inventory based mainly on primary data, which can easily be adapted to subsequent EV studies, and offers an improved understanding of environmental burdens pertaining to lithium‐ion traction batteries.
Journal of Industrial Ecology | 2014
Guillaume Majeau-Bettez; Richard Wood; Anders Hammer Strømman
The treatment of coproducts is one of the most persistent methodological challenges for both input‐output (IO) analysis and life cycle assessment (LCA). The two fields have developed distinct modeling traditions to artificially extract independent Leontief production functions (technological “recipes”) for products of multioutput activities; whereas IO operates in terms of system‐wide models named constructs, LCA practitioners usually use allocations or system expansion on a process‐by‐process basis. Recently, there have been renewed efforts to connect these two modeling traditions on the basis of their underlying assumptions. A formal description of a unified framework for the treatment of coproducts is still lacking, however. The present article strives to fill this gap. From a single generalized allocation equation, we derive all practical LCA allocations and IO constructs. This approach extends previous studies by arranging the different models in a formal “taxonomic tree,” clarifying the relation between the different LCA allocation and IO construct models. This framework also clarifies the relation of certain models to classical system expansion. We then analyze the properties of these models when combined with different types of inventories and make recommendations for best practice in inventory compilation.
Nature Nanotechnology | 2016
Linda Ager-Wick Ellingsen; Christine Roxanne Hung; Guillaume Majeau-Bettez; Bhawna Singh; Zhongwei Chen; M. Stanley Whittingham; Anders Hammer Strømman
Electric vehicles (EVs) powered by lithium-ion batteries (LIBs) or proton exchange membrane hydrogen fuel cells (PEMFCs) offer important potential climate change mitigation effects when combined with clean energy sources. The development of novel nanomaterials may bring about the next wave of technical improvements for LIBs and PEMFCs. If the next generation of EVs is to lead to not only reduced emissions during use but also environmentally sustainable production chains, the research on nanomaterials for LIBs and PEMFCs should be guided by a life-cycle perspective. In this Analysis, we describe an environmental life-cycle screening framework tailored to assess nanomaterials for electromobility. By applying this framework, we offer an early evaluation of the most promising nanomaterials for LIBs and PEMFCs and their potential contributions to the environmental sustainability of EV life cycles. Potential environmental trade-offs and gaps in nanomaterials research are identified to provide guidance for future nanomaterial developments for electromobility.
Journal of Industrial Ecology | 2015
Stefan Pauliuk; Guillaume Majeau-Bettez; Christopher L. Mutel; Bernhard Steubing; Konstantin Stadler
Industrial ecology (IE) is a maturing scientific discipline. The field is becoming more data and computation intensive, which requires IE researchers to develop scientific software to tackle novel research questions. We review the current state of software programming and use in our field and find challenges regarding transparency, reproducibility, reusability, and ease of collaboration. Our response to that problem is fourfold: First, we propose how existing general principles for the development of good scientific software could be implemented in IE and related fields. Second, we argue that collaborating on open source software could make IE research more productive and increase its quality, and we present guidelines for the development and distribution of such software. Third, we call for stricter requirements regarding general access to the source code used to produce research results and scientific claims published in the IE literature. Fourth, we describe a set of open source modules for standard IE modeling tasks that represent our first attempt at turning our recommendations into practice. We introduce a Python toolbox for IE that includes the life cycle assessment (LCA) framework Brightway2, the ecospold2matrix module that parses unallocated data in ecospold format, the pySUT and pymrio modules for building and analyzing multiregion input‐output models and supply and use tables, and the dynamic_stock_model class for dynamic stock modeling. Widespread use of open access software can, at the same time, increase quality, transparency, and reproducibility of IE research.
Journal of Industrial Ecology | 2018
Guillaume Majeau-Bettez; Thomas Dandres; Stefan Pauliuk; Richard Wood; Edgar G. Hertwich; Réjean Samson; Anders Hammer Strømman
Summary The divide between attributional and consequential research perspectives partly overlaps with the long-standing methodological discussions in the life cycle assessment (LCA) and input-output analysis (IO) research communities on the choice of techniques and models for dealing with situations of coproduction. The recent harmonization of LCA allocations and IO constructs revealed a more diverse set of coproduction models than had previously been understood. This increased flexibility and transparency in inventory modeling warrants a re-evaluation of the treatment of coproduction in analyses with attributional and consequential perspectives. In the present article, the main types of coproductions situations and of coproduction models are reviewed, along with key desirable characteristics of attributional and consequential studies. A concordance analysis leads to clear recommendations, which call for important refinements to current guidelines for both LCA/IO practitioners and database developers. We notably challenge the simple association between, on the one hand, attributional LCA and partition allocation, and on the one hand, consequential LCA and substitution modeling.
Nature Nanotechnology | 2017
Linda Ager-Wick Ellingsen; Christine Roxanne Hung; Guillaume Majeau-Bettez; Bhawna Singh; Zhongwei Chen; M. Stanley Whittingham; Anders Hammer Strømman
Nature Nanotechnology 11, 1039–1051 (2016); published 6 December 2016; corrected after print 14 December 2016 In the original version of this Analysis Christine Roxanne Hung should have been acknowledged as a corresponding author. This has been corrected in the online versions of the Analysis.
Materials | 2018
Linda Ager-Wick Ellingsen; Alex Holland; Jean Francois Drillet; Willi Peters; Martin Eckert; Carlos Concepcion; Oscar Ruiz; Jean François Colin; Etienne Knipping; Qiaoyan Pan; R.G.A. Wills; Guillaume Majeau-Bettez
Recently, rechargeable aluminum batteries have received much attention due to their low cost, easy operation, and high safety. As the research into rechargeable aluminum batteries with a room-temperature ionic liquid electrolyte is relatively new, research efforts have focused on finding suitable electrode materials. An understanding of the environmental aspects of electrode materials is essential to make informed and conscious decisions in aluminum battery development. The purpose of this study was to evaluate and compare the relative environmental performance of electrode material candidates for rechargeable aluminum batteries with an AlCl3/EMIMCl (1-ethyl-3-methylimidazolium chloride) room-temperature ionic liquid electrolyte. To this end, we used a lifecycle environmental screening framework to evaluate 12 candidate electrode materials. We found that all of the studied materials are associated with one or more drawbacks and therefore do not represent a “silver bullet” for the aluminum battery. Even so, some materials appeared more promising than others did. We also found that aluminum battery technology is likely to face some of the same environmental challenges as Li-ion technology but also offers an opportunity to avoid others. The insights provided here can aid aluminum battery development in an environmentally sustainable direction.
Journal of Industrial Ecology | 2018
Audrey Somé; Thomas Dandres; Caroline Gaudreault; Guillaume Majeau-Bettez; Richard Wood; Réjean Samson
Many countries see biofuels as a replacement to fossil fuels to mitigate climate change. Nevertheless, some concerns remain about the overall benefits of biofuels policies. More comprehensive tools seem required to evaluate indirect effects of biofuel policies. This article proposes a method to evaluate large-scale biofuel policies that is based on life cycle assessment (LCA), environmental extensions of input-output (I-O) tables, and a general equilibrium model. The method enables the assessment of indirect environmental effects of biofuels policies, including land-use changes (LUCs), in the context of economic and demographic growth. The method is illustrated with a case study involving two scenarios. The first one describes the evolution of the world economy from 2006 to 2020 under business as usual (BAU) conditions (including demographic and dietary preferences changes), and the second integrates biofuel policies in the United States and the European Union (EU). Results show that the biofuel scenario, originally designed to mitigate climate change, results in more greenhouse gas emissions when compared to the BAU scenario. This is mainly due to emissions associated with global LUCs. The case study shows that the method enables a broader consideration for environmental effects of biofuel policies than usual LCA: Global economic variations calculated by a general equilibrium economic model and LUC emissions can be evaluated. More work is needed, however, to include new biofuel production technologies and reduce the uncertainty of the method.