Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Guillaume Mornieux is active.

Publication


Featured researches published by Guillaume Mornieux.


International Journal of Sports Medicine | 2008

Effects of Pedal Type and Pull-Up Action during Cycling

Guillaume Mornieux; B. Stapelfeldt; Albert Gollhofer; Alain Belli

The aim of this study was to determine the influence of different shoe-pedal interfaces and of an active pulling-up action during the upstroke phase on the pedalling technique. Eight elite cyclists (C) and seven non-cyclists (NC) performed three different bouts at 90 rev . min (-1) and 60 % of their maximal aerobic power. They pedalled with single pedals (PED), with clipless pedals (CLIP) and with a pedal force feedback (CLIPFBACK) where subjects were asked to pull up on the pedal during the upstroke. There was no significant difference for pedalling effectiveness, net mechanical efficiency (NE) and muscular activity between PED and CLIP. When compared to CLIP, CLIPFBACK resulted in a significant increase in pedalling effectiveness during upstroke (86 % for C and 57 % NC, respectively), as well as higher biceps femoris and tibialis anterior muscle activity (p < 0.001). However, NE was significantly reduced (p < 0.008) with 9 % and 3.3 % reduction for C and NC, respectively. Consequently, shoe-pedal interface (PED vs. CLIP) did not significantly influence cycling technique during submaximal exercise. However, an active pulling-up action on the pedal during upstroke increased the pedalling effectiveness, while reducing net mechanical efficiency.


Journal of Biomechanics | 2013

How to sprain your ankle - a biomechanical case report of an inversion trauma.

Dominic Gehring; Sabrina Wissler; Guillaume Mornieux; Albert Gollhofer

In order to develop preventive measures against lateral ankle sprains, it is essential to have a detailed understanding of the injury mechanism. Under laboratory experimental conditions the examination of the joint load has to be restricted with clear margins of safety. However, in the present case one athlete sprained his ankle while performing a run-and-cut movement during a biomechanical research experiment. 3D kinematics, kinetics, and muscle activity of the lower limb were recorded and compared to 16 previously performed trials. Motion patterns of global pelvis orientation, hip flexion, and knee flexion in the sprain trail deviated from the reference trials already early in the preparatory phase before ground contact. During ground contact, the ankle was rapidly plantar flexed (up to 1240°/s), inverted (up to 1290°/s) and internally rotated (up to 580°/s) reaching its maximum displacement within the first 150 ms after heel strike. Rapid neuromuscular activation bursts of the m. tibialis anterior and the m. peroneus longus started 40-45 ms after ground contact and overshot the activation profile of the reference trials with peak activation at 62 ms and 74 ms respectively. Therefore, it may be suggested that neuromuscular reflexes played an important role in joint control during the critical phase of excessive ankle displacement. The results of this case report clearly indicate that (a) upper leg mechanics, (b) pre-landing adjustments, and (c) neuromuscular contribution have to be considered in the mechanism of lateral ankle sprains.


European Journal of Applied Physiology | 2010

Load-dependent movement regulation of lateral stretch shortening cycle jumps.

Jana Fleischmann; Dominic Gehring; Guillaume Mornieux; Albert Gollhofer

The classical stretch shortening cycle (SSC) describes sagittal joint flexion–extensions in motions like running or hopping. However, lateral movements are integral components of team sports and are associated with frontal plane joint displacements. The purpose of this study is to identify neuromuscular and kinematical mechanisms determining motor control and performance of reactive laterally conducted SSCs. Lateral jumps were performed from four distances in order to investigate the influence of lateral stretch loads on the lower extremity. Electromyographic (EMG) data of nine lower extremity muscles were collected. Foot, ankle, knee, and hip kinematics were recorded by 3-D motion analysis. High stretch loads were characterized by a greater foot exorotation during the initial phase of contact. In the sagittal plane knee and hip joint, displacements increased, whereas in the frontal plane only the hip joint displacement was significantly raised. In particular, frontal peak joint moments increased with stretch load. Thigh muscles’ mean pre-activity amplitude was enhanced. It was possible to detect stretch reflexes in the thigh muscles, whereas in particular the short-latency reflex (SLR) was stretch load-dependently modulated. The results of the present study suggest that the foot exorotation seems to play a decisive role in the movement control of lateral jumps. The association between exorotation and increased sagittal joint displacements may be seen as a compensation strategy to shift load from the frontal to the sagittal plane. Lateral load compensation seems to strongly depend on upper leg’s kinematic and neuromuscular adjustments, rather than on the ankle joint complex.


European Journal of Applied Physiology | 2011

Task-specific initial impact phase adjustments in lateral jumps and lateral landings.

Jana Fleischmann; Dominic Gehring; Guillaume Mornieux; Albert Gollhofer

Load-dependant adjustments in lateral jumps are thought to rely on foot placement and on upper leg’s kinematic and neuromuscular adaptations. The aim of this study was to elucidate task-specific adjustments during the initial impact phase under varying stretch-loads by the comparison of lateral jumps and lateral landings. Ten subjects performed lateral jumps and landings from four distances. Electromyographic (EMG) data of five lower extremity muscles were measured, whilst lower extremity kinematics and kinetics were analysed by 3D motion analysis. Lateral jumps were characterized by increased impact forces, higher lower extremity joint moments with exception of the initial knee abduction moment, greater sagittal knee and hip joint displacements, and a further exorotated foot placement. In lateral landings frontal ankle and hip joint displacements were greater. Thigh muscle and m. tibialis anterior (TA) pre-activity as well as initial post-impact EMG were higher in lateral jumps than in lateral landings, whilst during the reflex-induced phase thigh and shank muscle EMG, except for TA, were enhanced in lateral jumps. From these findings it can be concluded that task specificity in lateral jumps in contrast to lateral landings impedes a stretch-load adequate modulation of initial impact forces which particularly affects ankle joint loading. Foot placement seems to play a decisive role for limiting lateral ankle and medial knee joint loading. Therefore, in sports containing high-impact frontal plane movements a special emphasis in training routines should be paid to foot placement strategy in those movements. Such training interventions might contribute to injury prevention in lateral movements.


Journal of Sports Sciences | 2014

Anticipatory postural adjustments during cutting manoeuvres in football and their consequences for knee injury risk

Guillaume Mornieux; Dominic Gehring; Patrick Fürst; Albert Gollhofer

Abstract Anticipatory postural adjustments (APAs), i.e. preparatory positioning of the head, the trunk and the foot, are essential to initiate cutting manoeuvres during football games. The aim of the present study was to determine how APA strategies during cutting manoeuvres are influenced by a reduction of the time available to prepare the movement. Thirteen football players performed different cutting tasks, with directions of cutting either known prior to the task or indicated by a light signal occurring 850, 600 or 500 ms before ground contact. With less time available to prepare the cutting manoeuvre, the head was less orientated towards the cutting direction (P = 0.033) and the trunk was even more rotated in the opposite direction (P = 0.002), while the foot placement was not significantly influenced. Moreover, the induced higher lateral trunk flexion correlated with the increased knee abduction moment (r = 0.41; P = 0.009). Increasing lateral trunk flexion is the main strategy used to successfully perform a cutting manoeuvre when less time is available to prepare the movement. However, higher lateral trunk flexion was associated with an increased knee abduction moment and therefore an increased knee injury risk. Reducing lateral trunk flexion during cutting manoeuvres should be part of training programs seeking the optimisation of APAs.


Journal of Electromyography and Kinesiology | 2009

Timing of muscle activation of the lower limbs can be modulated to maintain a constant pedaling cadence

David M. Rouffet; Guillaume Mornieux; Karim Zameziati; Alain Belli; Christophe Hautier

This study investigated changes in muscle activity when subjects are asked to maintain a constant cadence during an unloaded condition. Eleven subjects pedaled for five loaded conditions (220 W, 190 W, 160 W, 130 W, 100 W) and one unloaded condition at 80 rpm. Electromyographic (EMG) activity of six lower limb muscles, pedal forces and oxygen consumption were calculated for every condition. Muscle activity was defined by timing (EMG onset and offset) and level (integrated values of EMGrms calculated between EMG onset and EMG offset) of activation, while horizontal and vertical impulses were computed to characterize pedal forces. Muscle activity, pedal forces and oxygen consumption variables measured during the unloaded condition were compared with those extrapolated to 0 W from the loaded conditions, assuming a linear relationship. The muscle activity was changed during unloaded condition: EMG onset and/or offset of rectus femoris, biceps femoris, vastus medialis, and gluteus maximus muscles were delayed (p<0.05); iEMGrms values of rectus femoris, biceps femoris, gastrocnemius medialis and tibialis anterior muscles were higher than those extrapolated to 0 W (p<0.05). Vertical impulse over the extension phase was lower (p<0.05) while backward horizontal impulse was higher (p<0.05) during unloaded condition than those extrapolated to 0 W. Oxygen consumptions were higher during unloaded condition than extrapolated to 0 W (750+/-147 vs. 529+/-297 mLO(2) x min(-1); p<0.05). Timing of activation of rectus femoris and biceps femoris was dramatically modified to optimize pedal forces and maintain a constant cadence, while systematic changes in the activation level of the bi-articular muscles induced a relative increase in metabolic expenditure when pedaling during an unloaded condition.


International Journal of Sports Medicine | 2010

Muscle coordination while pulling up during cycling.

Guillaume Mornieux; Albert Gollhofer; B. Stapelfeldt

The aim of this study was to determine the influence of the pull up action on the pedalling mechanics and muscle coordination during cycling. 9 elite cyclists pedalled at 320 watts with their preferred technique and while pulling up. The pull up action increased significantly the pedalling effectiveness during the upstroke and around the bottom dead centre. This was associated with a significant enhancement of the biceps femoris activity (48%), an earlier onset of activation of the tibialis anterior, i. e., 211 ± 83° vs. 259 ± 22° (crank angle) and a delayed offset of activation of the gastrocnemius lateralis, i. e., 244 ± 19° vs. 216 ± 39°. Consequently, co-activities between tibialis anterior and gastrocnemius lateralis muscles over 55 ± 65° (crank angle range), as well as between the biceps femoris and the tibialis anterior over 48 ± 57° were generated. These higher co-activities were necessary to stiffen the ankle joint and to power the pedal during the upstroke. Thus changes in muscle coordination improved the pedalling effectiveness during the upstroke phase but would probably lead to impairment of the oxygen consumption. Therefore, training the pull up action could be of interest to optimize this muscle coordination associated with better pedalling effectiveness by additionally relieving hip or knee extensors during the downstroke.


International Journal of Sports Medicine | 2013

Knee and hip joint biomechanics are gender-specific in runners with high running mileage.

Dominic Gehring; Guillaume Mornieux; Jana Fleischmann; Albert Gollhofer

Female runners are reported to be more prone to develop specific knee joint injuries than males. It has been suggested that increased frontal plane joint loading might be related to the incidence of these knee injuries in running. The purpose of this study was to evaluate if frontal plane knee and hip joint kinematics and kinetics are gender-specific in runners with high mileage. 3D-kinematics and kinetics were recorded from 16 female and 16 male runners at a speed of 3 m/s, 4 m/s, and 5 m/s. Frontal plane joint angles and joint moments were ascertained and compared between genders among speed conditions. Across all speed conditions, females showed increased hip adduction and reduced knee adduction angles compared to males (p < 0.003). The initial peak in the hip adduction moment was enhanced in females (p = 0.003). Additionally, the hip adduction impulse showed a trend towards an increase in females at slow running speed (p = 0.07). Hip and knee frontal plane joint kinematics are gender-specific. In addition, there are indications that frontal plane joint loading is increased in female runners. Future research should focus on the relationship of these observations regarding overuse running injuries.


European Journal of Sport Science | 2014

Changes in leg kinematics in response to unpredictability in lateral jump execution

Guillaume Mornieux; Dominic Gehring; Craig D. Tokuno; Albert Gollhofer; Wolfgang Taube

Abstract Lateral movements like cutting are essential in many team sport disciplines. The aim of the present study was to analyse adaptations in motor control in response to task unpredictability during lateral movement execution. Twelve subjects performed lateral jumps with different landing modalities (stable, sliding or counteracting) that were either known (predictable setting) or unknown (unpredictable setting) prior to movement execution. Results revealed that regardless of the landing modality, hip joint abduction was significantly greater in the unpredictable compared to predictable setting. Furthermore, during the sliding landing modality, hip flexion decreased from 211 ± 7° to 207 ± 7° and knee flexion decreased from 26 ± 4° to 24 ± 4° at the instant of ground contact in the unpredictable compared to predictable condition. During the stable landing modality, the knee joint abduction increased from −0.3 ± 6° to −3 ± 6° after initial ground contact in the unpredictable compared to predictable setting. The present results support our hypothesis that pre-programmed motor activity depends on the predictability of the landing modality during lateral movements. According to its adaptation in the frontal plane and in some extent in the sagittal plane, the hip joint seems to play the major role in the modulation of the pre-programmed activity for successful lateral jump execution in an unpredictable setting. However, these kinematic adaptations are concerning since these changes were associated with higher knee abduction during the stable landing modality and therefore with possible higher risk of injury.


Sports Orthopaedics and Traumatology Sport-Orthopädie - Sport-Traumatologie | 2005

RADSPORT: Biomechanik im Radsport

Björn Stapelfeldt; Guillaume Mornieux

Zusammenfassung Die Biomechanik des Antriebs setzt sich mit den am Pedal wirkenden Kraften auseinander. Messbar werden die Pedalkrafte mit speziellen Messgeraten, deren neueste Entwicklung den Einsatz verschiedener Pedalsysteme ermoglicht. Mit Hilfe des Oberflachenelektromyogramms kann die muskulare Koordination der Pedalierbewegung analysiert werden. Der einfachste Zugang bietet sich uber eine Zuordnung der Muskelaktivitat zum Kurbelkreis uber Ein- und Ausschaltzeiten. Die Interpretation der Ergebnisse muss im Lichte der anatomischen Funktion des jeweiligen Muskels und seines Antagonisten bezogen auf den Kurbelwinkel erfolgen.

Collaboration


Dive into the Guillaume Mornieux's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alain Belli

University of Lausanne

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Heiner Baur

Bern University of Applied Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge