Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Guillaume Pavlovic is active.

Publication


Featured researches published by Guillaume Pavlovic.


Nature | 2013

Distinct fibroblast lineages determine dermal architecture in skin development and repair

Ryan R. Driskell; Beate M. Lichtenberger; Esther Hoste; Kai Kretzschmar; B. D. Simons; Marika Charalambous; Sacri R. Ferrón; Yann Herault; Guillaume Pavlovic; Anne C. Ferguson-Smith; Fiona M. Watt

Fibroblasts are the major mesenchymal cell type in connective tissue and deposit the collagen and elastic fibres of the extracellular matrix (ECM). Even within a single tissue, fibroblasts exhibit considerable functional diversity, but it is not known whether this reflects the existence of a differentiation hierarchy or is a response to different environmental factors. Here we show, using transplantation assays and lineage tracing in mice, that the fibroblasts of skin connective tissue arise from two distinct lineages. One forms the upper dermis, including the dermal papilla that regulates hair growth and the arrector pili muscle, which controls piloerection. The other forms the lower dermis, including the reticular fibroblasts that synthesize the bulk of the fibrillar ECM, and the preadipocytes and adipocytes of the hypodermis. The upper lineage is required for hair follicle formation. In wounded adult skin, the initial wave of dermal repair is mediated by the lower lineage and upper dermal fibroblasts are recruited only during re-epithelialization. Epidermal β-catenin activation stimulates the expansion of the upper dermal lineage, rendering wounds permissive for hair follicle formation. Our findings explain why wounding is linked to formation of ECM-rich scar tissue that lacks hair follicles. They also form a platform for discovering fibroblast lineages in other tissues and for examining fibroblast changes in ageing and disease.


Journal of Lipid Research | 2010

PCSK9 is not involved in the degradation of LDL receptors and BACE1 in the adult mouse brain

Mali Liu; Guoxin Wu; Jennifer Baysarowich; Michael Kavana; George H. Addona; Kathleen K. Bierilo; John S. Mudgett; Guillaume Pavlovic; Ayesha Sitlani; John J. Renger; Brian K. Hubbard; Timothy S. Fisher; Celina Zerbinatti

Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a secreted protein that regulates hepatic low-density lipoprotein receptor (LDLR) levels in humans. PCSK9 has also been shown to regulate the levels of additional membrane-bound proteins in vitro, including the very low-density lipoprotein receptor (VLDLR), apolipoprotein E receptor 2 (ApoER2) and the β-site amyloid precursor protein (APP)-cleaving enzyme 1 (BACE1), which are all highly expressed in the CNS and have been implicated in Alzheimers disease. To better understand the role of PCSK9 in regulating these additional target proteins in vivo, their steady-state levels were measured in the brain of wild-type, PCSK9-deficient, and human PCSK9 overexpressing transgenic mice. We found that while PCSK9 directly bound to recombinant LDLR, VLDLR, and apoER2 protein in vitro, changes in PCSK9 expression did not alter the level of these receptors in the mouse brain. In addition, we found no evidence that PCSK9 regulates BACE1 levels or APP processing in the mouse brain. In conclusion, our results suggest that while PCSK9 plays an important role in regulating circulating LDL cholesterol levels by reducing the number of hepatic LDLRs, it does not appear to modulate the levels of LDLR and other membrane-bound proteins in the adult mouse brain.


The Journal of Neuroscience | 2012

Absence of TI-VAMP/Vamp7 Leads to Increased Anxiety in Mice

Kathleen Zylbersztejn; Maja Petkovic; Maxime Gauberti; Hamid Meziane; Roy Combe; Marie-France Champy; Marie-Christine Birling; Guillaume Pavlovic; Jean-Charles Bizot; Fabrice Trovero; Floriana Della Ragione; Véronique Proux-Gillardeaux; Tania Sorg; Denis Vivien; Maurizio D'Esposito; Thierry Galli

Vesicular (v)- and target (t)-SNARE proteins assemble in SNARE complex to mediate membrane fusion. Tetanus neurotoxin-insensitive vesicular-associated membrane protein (TI-VAMP/VAMP7), a vesicular SNARE expressed in several cell types including neurons, was previously shown to play a major role in exocytosis involved in neurite growth in cultured neurons. Here we generated a complete constitutive knock-out by deleting the exon 3 of Vamp7. Loss of TI-VAMP expression did not lead to any striking developmental or neurological defect. Knock-out mice displayed decreased brain weight and increased third ventricle volume. Axon growth appeared normal in cultured knock-out neurons. Behavioral characterization unraveled that TI-VAMP knock-out was associated with increased anxiety. Our results thus suggest compensatory mechanisms allowing the TI-VAMP knock-out mice to fulfill major developmental processes. The phenotypic traits unraveled here further indicate an unexpected role of TI-VAMP-mediated vesicular traffic in anxiety and suggest a role for TI-VAMP in higher brain functions.


Neuron | 2017

Translation of Expanded CGG Repeats into FMRpolyG Is Pathogenic and May Contribute to Fragile X Tremor Ataxia Syndrome

Chantal Sellier; Ronald A.M. Buijsen; Fang He; Sam Natla; Laura Jung; Philippe Tropel; Angeline Gaucherot; Hugues Jacobs; Hamid Meziane; Alexandre Vincent; Marie-France Champy; Tania Sorg; Guillaume Pavlovic; Marie Wattenhofer-Donzé; Marie-Christine Birling; Mustapha Oulad-Abdelghani; Pascal Eberling; Frank Ruffenach; Mathilde Joint; Mathieu Anheim; Verónica Martínez-Cerdeño; Flora Tassone; Rob Willemsen; Renate K. Hukema; Stéphane Viville; Cécile Martinat; Peter K. Todd; Nicolas Charlet-Berguerand

Summary Fragile X-associated tremor/ataxia syndrome (FXTAS) is a neurodegenerative disorder caused by a limited expansion of CGG repeats in the 5′ UTR of FMR1. Two mechanisms are proposed to cause FXTAS: RNA gain-of-function, where CGG RNA sequesters specific proteins, and translation of CGG repeats into a polyglycine-containing protein, FMRpolyG. Here we developed transgenic mice expressing CGG repeat RNA with or without FMRpolyG. Expression of FMRpolyG is pathogenic, while the sole expression of CGG RNA is not. FMRpolyG interacts with the nuclear lamina protein LAP2β and disorganizes the nuclear lamina architecture in neurons differentiated from FXTAS iPS cells. Finally, expression of LAP2β rescues neuronal death induced by FMRpolyG. Overall, these results suggest that translation of expanded CGG repeats into FMRpolyG alters nuclear lamina architecture and drives pathogenesis in FXTAS.


Nature Genetics | 2017

Disease model discovery from 3,328 gene knockouts by The International Mouse Phenotyping Consortium.

Terrence F. Meehan; Nathalie Conte; David B. West; Julius Jacobsen; Jeremy Mason; Jonathan Warren; Chao Kung Chen; Ilinca Tudose; Mike Relac; Peter Matthews; Natasha A. Karp; Luis Santos; Tanja Fiegel; Natalie Ring; Henrik Westerberg; Simon Greenaway; Duncan Sneddon; Hugh Morgan; Gemma F. Codner; Michelle Stewart; James Brown; Neil R. Horner; Melissa Haendel; Nicole L. Washington; Christopher J. Mungall; Corey Reynolds; Juan Gallegos; Valerie Gailus-Durner; Tania Sorg; Guillaume Pavlovic

Although next-generation sequencing has revolutionized the ability to associate variants with human diseases, diagnostic rates and development of new therapies are still limited by a lack of knowledge of the functions and pathobiological mechanisms of most genes. To address this challenge, the International Mouse Phenotyping Consortium is creating a genome- and phenome-wide catalog of gene function by characterizing new knockout-mouse strains across diverse biological systems through a broad set of standardized phenotyping tests. All mice will be readily available to the biomedical community. Analyzing the first 3,328 genes identified models for 360 diseases, including the first models, to our knowledge, for type C Bernard–Soulier, Bardet–Biedl-5 and Gordon Holmes syndromes. 90% of our phenotype annotations were novel, providing functional evidence for 1,092 genes and candidates in genetically uncharacterized diseases including arrhythmogenic right ventricular dysplasia 3. Finally, we describe our role in variant functional validation with The 100,000 Genomes Project and others.


Arthritis & Rheumatism | 2014

Skin Progenitor Cells Contribute to Bleomycin‐Induced Skin Fibrosis

Shangxi Liu; Yann Herault; Guillaume Pavlovic; Andrew Leask

The origin of the cells that contribute to skin fibrosis is unclear. We undertook the present study to assess the contribution of Sox2‐expressing skin progenitor cells to bleomycin‐induced scleroderma.


Genesis | 2012

Highly-efficient, fluorescent, locus directed cre and FlpO deleter mice on a pure C57BL/6N genetic background

Marie-Christine Birling; Andrée Dierich; Sylvie Jacquot; Yann Herault; Guillaume Pavlovic

To facilitate the use of the new mutant resource developed in the mouse, we have generated Cre and FlpO deleter mice on a pure inbred C57BL/6N background. The new transgenic constructs were designed to drive either the Cre or FlpO recombinase, fused to a specific fluorescent marker, respectively the eGFP or the eYFP, and were inserted by homologous recombination in the neutral Rosa26 locus. They allow a rapid, cost‐effective, and efficient identification of the carrier individuals through the coexpression of the fluorescent marker. The recombination efficiency of the two deleter lines, Gt(ROSA)26Sor and Gt(ROSA)26Sor, was carefully evaluated using five loxP‐flanked or four FRT‐flanked alleles located at different positions in the mouse genome. For each tested locus, we observed a 100% excision rate. The transgenic mice are easily distinguishable from wild type animals by their bright fluorescence that remains easily detectable until 10 days after birth. In the adult, fluorescence can still be detected inthe unpigmented paws. Furthermore, they both display accumulation of the specific recombinase during oogenesis. These fluorescent ‘Cre‐ and Flp‐ deleter’ transgenic lines are valuable tools for the scientific community by their high and stable recombination efficiency, the simplicity of genotype identification and the maintenance of a pure genetic background when used to remove specific selection cassette or to induce complete loss‐of‐function allele. genesis 50:482–489, 2012.


Scientific Reports | 2017

Efficient and rapid generation of large genomic variants in rats and mice using CRISMERE

Marie-Christine Birling; Laurence Schaeffer; Philippe André; Loic Lindner; Damien Maréchal; Abdel Ayadi; Tania Sorg; Guillaume Pavlovic; Yann Herault

Modelling Down syndrome (DS) in mouse has been crucial for the understanding of the disease and the evaluation of therapeutic targets. Nevertheless, the modelling so far has been limited to the mouse and, even in this model, generating duplication of genomic regions has been labour intensive and time consuming. We developed the CRISpr MEdiated REarrangement (CRISMERE) strategy, which takes advantage of the CRISPR/Cas9 system, to generate most of the desired rearrangements from a single experiment at much lower expenses and in less than 9 months. Deletions, duplications, and inversions of genomic regions as large as 24.4 Mb in rat and mouse founders were observed and germ line transmission was confirmed for fragment as large as 3.6 Mb. Interestingly we have been able to recover duplicated regions from founders in which we only detected deletions. CRISMERE is even more powerful than anticipated it allows the scientific community to manipulate the rodent and probably other genomes in a fast and efficient manner which was not possible before.


Mammalian Genome | 2017

Modeling human disease in rodents by CRISPR/Cas9 genome editing

Marie-Christine Birling; Yann Herault; Guillaume Pavlovic

Modeling human disease has proven to be a challenge for the scientific community. For years, generating an animal model was complicated and restricted to very few species. With the rise of CRISPR/Cas9, it is now possible to generate more or less any animal model. In this review, we will show how this technology is and will change our way to obtain relevant disease animal models and how it should impact human health.


Journal of Biological Chemistry | 2016

Physiological Expression of AMPKγ2RG Mutation Causes Wolff-Parkinson-White Syndrome and Induces Kidney Injury in Mice

Xiaodong Yang; John S. Mudgett; Ghina Bouabout; Marie-France Champy; Hugues Jacobs; Laurent Monassier; Guillaume Pavlovic; Tania Sorg; Yann Herault; Benoit Petit-Demoulière; Ku Lu; Wen Feng; Hongwu Wang; Lijun Ma; Roger Askew; Mark D. Erion; David E. Kelley; Robert W. Myers; Cai Li; Hong-Ping Guan

Mutations of the AMP-activated kinase gamma 2 subunit (AMPKγ2), N488I (AMPKγ2NI) and R531G (AMPKγ2RG), are associated with Wolff-Parkinson-White (WPW) syndrome, a cardiac disorder characterized by ventricular pre-excitation in humans. Cardiac-specific transgenic overexpression of human AMPKγ2NI or AMPKγ2RG leads to constitutive AMPK activation and the WPW phenotype in mice. However, overexpression of these mutant proteins also caused profound, non-physiological increase in cardiac glycogen, which might abnormally alter the true phenotype. To investigate whether physiological levels of AMPKγ2NI or AMPKγ2RG mutation cause WPW syndrome and metabolic changes in other organs, we generated two knock-in mouse lines on the C57BL/6N background harboring mutations of human AMPKγ2NI and AMPKγ2RG, respectively. Similar to the reported phenotypes of mice overexpressing AMPKγ2NI or AMPKγ2RG in the heart, both lines developed WPW syndrome and cardiac hypertrophy; however, these effects were independent of cardiac glycogen accumulation. Compared with AMPKγ2WT mice, AMPKγ2NI and AMPKγ2RG mice exhibited reduced body weight, fat mass, and liver steatosis when fed with a high fat diet (HFD). Surprisingly, AMPKγ2RG but not AMPKγ2NI mice fed with an HFD exhibited severe kidney injury characterized by glycogen accumulation, inflammation, apoptosis, cyst formation, and impaired renal function. These results demonstrate that expression of AMPKγ2NI and AMPKγ2RG mutations at physiological levels can induce beneficial metabolic effects but that this is accompanied by WPW syndrome. Our data also reveal an unexpected effect of AMPKγ2RG in the kidney, linking lifelong constitutive activation of AMPK to a potential risk for kidney dysfunction in the context of an HFD.

Collaboration


Dive into the Guillaume Pavlovic's collaboration.

Top Co-Authors

Avatar

Yann Herault

University of Strasbourg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tania Sorg

University of Strasbourg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Loic Lindner

University of Strasbourg

View shared research outputs
Top Co-Authors

Avatar

Martin Fray

Medical Research Council

View shared research outputs
Top Co-Authors

Avatar

Abdel Ayadi

University of Strasbourg

View shared research outputs
Top Co-Authors

Avatar

Hugues Jacobs

University of Strasbourg

View shared research outputs
Top Co-Authors

Avatar

Allan Bradley

Wellcome Trust Sanger Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge