Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Guillem Aromí is active.

Publication


Featured researches published by Guillem Aromí.


Dalton Transactions | 2009

Iron Spin-Crossover compounds: from fundamental studies to practical applications

Patrick Gamez; José Sánchez Costa; Manuel Quesada; Guillem Aromí

Over the past five years, the spin-crossover (SCO) phenomenon has experienced a clear new lease of interest from the scientific community coinciding with the recent publication of remarkable new advances. This perspective paper describes five illustrative examples of SCO systems, published during the past twelve months, showing new aspects of the unique and very appealing behaviour of these molecular switches, which may find interesting applications in the near future.


Inorganic Chemistry | 2012

Synthesis, Crystal Structures, Magnetic Properties and Catecholase Activity of Double Phenoxido-Bridged Penta-Coordinated Dinuclear Nickel(II) Complexes Derived from Reduced Schiff-Base Ligands: Mechanistic Inference of Catecholase Activity

Apurba Biswas; Lakshmi Kanta Das; Michael G. B. Drew; Guillem Aromí; Patrick Gamez; Ashutosh Ghosh

Three double phenoxido-bridged dinuclear nickel(II) complexes, namely [Ni(2)(L(1))(2)(NCS)(2)] (1), [Ni(2)(L(2))(2)(NCS)(2)] (2), and [Ni(2)(L(3))(2)(NCS)(2)] (3) have been synthesized using the reduced tridentate Schiff-base ligands 2-[1-(3-methylamino-propylamino)-ethyl]-phenol (HL(1)), 2-[1-(2-dimethylamino-ethylamino)-ethyl]-phenol (HL(2)), and 2-[1-(3-dimethylamino-propylamino)-ethyl]-phenol (HL(3)), respectively. The coordination compounds have been characterized by X-ray structural analyses, magnetic-susceptibility measurements, and various spectroscopic methods. In all complexes, the nickel(II) ions are penta-coordinated in a square-pyramidal environment, which is severely distorted in the case of 1 (Addison parameter τ = 0.47) and 3 (τ = 0.29), while it is almost perfect for 2 (τ = 0.03). This arrangement leads to relatively strong antiferromagnetic interactions between the Ni(II) (S = 1) metal centers as mediated by double phenoxido bridges (with J values of -23.32 (1), -35.45 (2), and -34.02 (3) cm(3) K mol(-1), in the convention H = -2JS(1)S(2)). The catalytic activity of these Ni compounds has been investigated for the aerial oxidation of 3,5-di-tert-butylcatechol. Kinetic data analysis following Michaelis-Menten treatment reveals that the catecholase activity of the complexes is influenced by the flexibility of the ligand and also by the geometry around the metal ion. Electrospray ionization mass spectroscopy (ESI-MS) studies (in the positive mode) have been performed for all the coordination compounds in the presence of 3,5-DTBC to characterize potential complex-substrate intermediates. The mass-spectrometry data, corroborated by electron paramagnetic resonance (EPR) measurements, suggest that the metal centers are involved in the catecholase activity exhibited by the complexes.


Physical Review Letters | 2011

Molecular prototypes for spin-based CNOT and SWAP quantum gates

Fernando Luis; Repollés A; Marı́a José Martı́nez-Pérez; Aguilà D; Olivier Roubeau; David Zueco; P. J. Alonso; Marco Evangelisti; Agustín Camón; J. Sesé; Leoní A. Barrios; Guillem Aromí

We show that a chemically engineered structural asymmetry in [Tb2] molecular clusters renders the two weakly coupled Tb3+ spin qubits magnetically inequivalent. The magnetic energy level spectrum of these molecules meets then all conditions needed to realize a universal CNOT quantum gate. A proposal to realize a SWAP gate within the same molecule is also discussed. Electronic paramagnetic resonance experiments confirm that CNOT and SWAP transitions are not forbidden.


Journal of the American Chemical Society | 2014

Heterodimetallic [LnLn′] Lanthanide Complexes: Toward a Chemical Design of Two-Qubit Molecular Spin Quantum Gates

David Aguilà; Leoní A. Barrios; Verónica Velasco; Olivier Roubeau; Ana Repollés; Pablo J. Alonso; J. Sesé; Simon J. Teat; Fernando Luis; Guillem Aromí

A major challenge for realizing quantum computation is finding suitable systems to embody quantum bits (qubits) and quantum gates (qugates) in a robust and scalable architecture. An emerging bottom-up approach uses the electronic spins of lanthanides. Universal qugates may then be engineered by arranging in a molecule two interacting and different lanthanide ions. Preparing heterometallic lanthanide species is, however, extremely challenging. We have discovered a method to obtain [LnLn′] complexes with the appropriate requirements. Compound [CeEr] is deemed to represent an ideal situation. Both ions have a doubly degenerate magnetic ground state and can be addressed individually. Their isotopes have mainly zero nuclear spin, which enhances the electronic spin coherence. The analogues [Ce2], [Er2], [CeY], and [LaEr] have also been prepared to assist in showing that [CeEr] meets the qugate requirements, as revealed through magnetic susceptibility, specific heat, and EPR. Molecules could now be used for quantum information processing.


Polyhedron | 2001

Magnetization tunneling in single-molecule magnets

David N. Hendrickson; George Christou; Hidehiko Ishimoto; Jae Yoo; Euan K. Brechin; Akira Yamaguchi; E. M. Rumberger; Sheila M. J. Aubin; Ziming Sun; Guillem Aromí

The quantum mechanical tunneling of the direction of magnetization is discussed for several examples of single-molecules magnets (SMM’s). SMM’s are molecules that function as nanomagnets. Magnetization tunneling is described for two crystallographically different forms of [Mn12O12(O2CC6H4-p-Me)16(H2O)4] solvate. The two Mn12 complexes are isomers that both differ in the positioning of the H2O and carboxylate ligands and also in the orientations of the Jahn–Teller elongation at the Mn III ions. The magnetization versus magnetic field hysteresis loop is quite different for the two isomeric Mn12 complexes. One Mn12 complex exhibits a magnetization hysteresis loop that is characteristic of considerably faster magnetization tunneling than in the other Mn12 isomer. The lower symmetry and greater rhombic zero-field splitting are the origin of the faster magnetization tunneling. Frequency-dependent ac magnetic susceptibility and dc magnetization decay data are presented to characterize the magnetization relaxation rate versus temperature responses of three mixed-valence Mn4 complexes. In all three cases, the Arrhenius plot of the logarithm of the magnetization relaxation rate versus the inverse absolute temperature shows a temperature-dependent region as well as a temperature-independent region. The temperature-independent magnetization rate is definitive evidence of magnetization tunneling in the lowest-energy zero-field component of the ground state.


Inorganic Chemistry | 2008

Self-assembly of an azido-bridged [NiII6] cluster featuring four fused defective cubanes.

Debashree Mandal; Valerio Bertolasi; Jordi Ribas-Arino; Guillem Aromí; Debashis Ray

The cluster [Ni6(H2L)2(HL1)2(N3)8].2C2H5OH.2H2O [1.2C2H5OH.2H2O], featuring four fused defective cubanes, has been obtained via azido-bridge-driven dimerization of two phenolate-centered trinuclear Ni3 fragments.


Chemistry: A European Journal | 2011

A Molecular Pair of [GdNi3] Tetrahedra Bridged by Water Molecules

Ayako Hosoi; Yasuhiko Yukawa; Satoshi Igarashi; Simon J. Teat; Olivier Roubeau; Marco Evangelisti; Eduard Cremades; Eliseo Ruiz; Leoní A. Barrios; Guillem Aromí

The authors thank the Generalitat de Catalunya for the prize ICREA Academia 2008 (G.A.) and Grant 2009SGR-1459 (E.C. and E.R.) and Spanish MCI through CTQ2009–06959 (G.A., L.B.), MAT2009-13977- C03 (M.E.), and CTQ2008–06670-C02–01 (E.C., ER). The advanced light source (S.J.T.) is supported by the U.S. Department of Energy (DE-AC02–05CH11231).


Chemistry: A European Journal | 2013

Lanthanide Contraction within a Series of Asymmetric Dinuclear [Ln2] Complexes

David Aguilà; Leoní A. Barrios; Verónica Velasco; Leticia Arnedo; Núria Aliaga-Alcalde; Melita Menelaou; Simon J. Teat; Olivier Roubeau; Fernando Luis; Guillem Aromí

A complete isostructural series of dinuclear asymmetric lanthanide complexes has been synthesized by using the ligand 6-[3-oxo-3-(2-hydroxyphenyl)propionyl]pyridine-2-carboxylic acid (H3L). All complexes have the formula [Ln2(HL)2(H2L)(NO3)(py)(H2O)] (Ln = La (1), Ce (2), Pr (3), Nd (4), Sm (5), Eu (6), Gd (7), Tb (8), Dy (9), Ho (10), Er (11), Tm (12), Yb (13), Lu (14), Y (15); py = pyridine). Complexes of La to Yb and Y have been crystallographically characterized to reveal that the two metal ions are encapsulated within two distinct coordination environments of differing size. Whereas one site maintains the coordination number (nine) through the whole series, the other one increases from nine to ten owing to a change in the coordination mode of an NO3(-) ligand. This series offers a unique opportunity to study in detail the lanthanide contraction within complexes of more than one metal. This analysis shows that various representative parameters proportional to this contraction follow a quadratic decay as a function of the number n of f electrons. Slaters model for the atomic radii has been used to extract, from these decays, the shielding constant of 4f electrons. The average of O⋅⋅⋅O distances within the coordination polyhedra shared by both metals and of the Ln⋅⋅⋅Ln separations follow also a quadratic decay, therefore showing that such dependence holds also for parameters that receive the contribution of two lanthanide ions simultaneously. The magnetic behavior has been studied for all nondiamagnetic complexes. It reveals the effect of the spin-orbit coupling and a weak antiferromagnetic interaction between both metals. Photoluminescent studies of all the complexes in the series reveal a single broad emission band in the visible region, which is related to the coordinated ligand. On the other hand, the Nd, Er, and Yb complexes show features in the near-IR region due to metal-based transitions.


Inorganic Chemistry | 2008

Coordination Complexes Exhibiting Anion···π Interactions: Synthesis, Structure, and Theoretical Studies

Leoní A. Barrios; Guillem Aromí; Antonio Frontera; David Quiñonero; Pere M. Deyà; Patrick Gamez; Olivier Roubeau; Elizabeth J. Shotton; Simon J. Teat

The polydentate ligand 2,4,6-tris(dipyridin-2-ylamino)-1,3,5-triazine (dpyatriz) in combination with the Cu(ClO 4) 2/CuX 2 salt mixtures (X (-) = Cl (-), Br (-), or N 3 (-)) leads to the formation of molecular coordination aggregates with formulas [Cu 3Cl 3(dpyatriz) 2](ClO 4) 3 ( 2), [Cu 3Br 3(dpyatriz) 2](ClO 4) 3 ( 3), and [Cu 4(N 3) 4(dpyatriz) 2(DMF) 4(ClO 4) 2](ClO 4) 2 ( 4). These complexes consist of two dpyatriz ligands bridged via coordination to Cu (II) and disposed either face-to-face in an eclipsed manner ( 2 and 3) or parallel and mutually shifted in one direction. The copper ions complete their coordination positions with Cl (-) ( 2), Br (-) ( 3), or N 3 (-), ClO 4 (-), and N, N-dimethylformamide (DMF) ( 4) ligands. All complexes crystallize together with noncoordinate ClO 4 (-) groups that display anion...pi interactions with the triazine rings. These interactions have been studied by means of high level ab initio calculations and the MIPp partition scheme. These calculations have proven the ClO 4 (-)...[C 3N 3] interactions to be favorable and have revealed a synergistic effect from the combined occurrence of pi-pi stacking of triazine rings and the interaction of these moieties with perchlorate ions, as observed in the experimental systems.


Chemistry: A European Journal | 2011

Coupled Crystallographic Order-Disorder and Spin State in a Bistable Molecule: Multiple Transition Dynamics

Gavin A. Craig; José Sánchez Costa; Olivier Roubeau; Simon J. Teat; Guillem Aromí

A novel bispyrazolylpyridine ligand incorporating lateral phenol groups, H(4)L, has led to an Fe(II) spin-crossover (SCO) complex, [Fe(H(4)L)(2)][ClO(4)](2)⋅H(2)O⋅2 (CH(3))(2)CO (1), with an intricate network of intermolecular interactions. It exhibits a 40 K wide hysteresis of magnetization as a result of the spin transition (with T(0.5) of 133 and 173 K) and features an unsymmetrical and very rich structure. The latter is a consequence of the coupling between the SCO and the crystallographic transformations. The high-spin state may also be thermally trapped, exhibiting a very large T(TIESST) (≈104 K). The structure of 1 has been determined at various temperatures after submitting the crystal to different processes to recreate the key points of the hysteresis cycle and thermal trapping; 200 K, cooled to 150 K and trapped at 100 K (high spin, HS), slowly cooled to 100 K and warmed to 150 K (low spin, LS). In the HS state, the system always exhibits disorder for some components (one ClO(4)(-) and two acetone molecules) whereas the LS phases show a relative ≈9 % reduction in the Fe-N bond lengths and anisotropic contraction of the unit cell. Most importantly, in the LS state all the species are always found to be ordered. Therefore, the bistability of crystallographic order-disorder coupled to SCO is demonstrated here experimentally for the first time. The variation in the cell parameters in 1 also exhibits hysteresis. The structural and magnetic thermal variations in this compound are paralleled by changes in the heat capacity as measured by differential scanning calorimetry. Attempts to simulate the asymmetric SCO behaviour of 1 by using an Ising-like model underscore the paramount role of dynamics in the coupling between the SCO and the crystallographic transitions.

Collaboration


Dive into the Guillem Aromí's collaboration.

Top Co-Authors

Avatar

Olivier Roubeau

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Simon J. Teat

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Debashis Ray

Indian Institute of Technology Kharagpur

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fernando Luis

Spanish National Research Council

View shared research outputs
Researchain Logo
Decentralizing Knowledge