Guillermo Booth-Rea
Spanish National Research Council
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Guillermo Booth-Rea.
Geochemistry Geophysics Geosystems | 2007
Guillermo Booth-Rea; César R. Ranero; José Miguel Martínez-Martínez; Ingo Grevemeyer
Multichannel seismic reflection images across the transition between the east Alboran and the Algero-Balearic basins show how crustal thickness decreases from about 5 s two-way traveltime (TWTT, ∼15 km thick) in the west (east Alboran basin) to ∼2 s TWTT typical of oceanic crust (∼6 km thick) in the east (Algero-Balearic basin). We have differentiated three different crustal domains in this transition, mainly on the basis of crustal thickness and seismic signature. Boundaries between the three crustal domains are transitional and lack evidence for major faults. Tilted blocks related to extension are very scarce and all sampled basement outcrops are volcanic, suggesting a strong relationship between magmatism and crustal structure. Stratigraphic correlation of lithoseismic units with sedimentary units of southeastern Betic basins indicates that sediments onlap igneous basement approximately at 12 Ma in the eastern area and at 8 Ma in the western area. Linking seismic crustal structure with magmatic geochemical evidence suggests that the three differentiated crustal domains may represent, from west to east, thin continental crust modified by arc magmatism, magmatic-arc crust, and oceanic crust. Middle to late Miocene arc and oceanic crust formation in the east Alboran and Algero-Balearic basins, respectively, occurred during westward migration of the Gibraltar accretionary wedge and shortening in the Betic-Rif foreland basins. Arc magmatism and associated backarc oceanic crust formation were related to early to middle Miocene subduction and rollback of the Flysch Trough oceanic basement. Subduction of this narrow slab beneath the Alboran basin was coeval with collision of the Alboran domain with the Iberian and African passive margins and subsequent subcontinental-lithosphere edge delamination along the Betic-Rif margins.
Geology | 2011
Carlos J. Garrido; Frédéric Gueydan; Guillermo Booth-Rea; Jacques Précigout; Károly Hidas; José Alberto Padrón-Navarta; Claudio Marchesi
Uplift and exhumation of vast exposures of diamond facies, subcontinental mantle peridotite in the Western Mediterranean arc are attributed to tectonic scenarios including pure extension, transpression or subduction followed by delamination-driven or rollback-driven stretching. In the Ronda peridotite (southern Spain) the strong overprint of low-pressure assemblages has precluded accurate determination of the pressure and temperature conditions for the onset of exhumation that formed the spinel tectonite and garnet-spinel mylonite domain in this massif. Here we report unequivocal petrographic evidence for the existence of prekinematic, coarse-grained garnet lherzolite assemblages from the garnet-spinel mylonite domain of the Ronda peridotite. Application of well-calibrated geothermobarometers yields prekinematic minimum equilibration conditions of 2.4–2.7 GPa and 1020–1100 °C, demonstrating that the Ronda peridotite equilibrated at ∼85 km depth before shearing. We also show the existence of synkinematic garnet and spinel assemblages that overprinted garnet lherzolite assemblages at 800–900 °C and 1.95–2.00 GPa. The decompressional cooling path and high pressure recorded by garnet-spinel mylonites rule out their formation by near-isobaric cooling above a subduction-collision wedge or during or after the emplacement of the peridotite massif into the crust. Ronda garnet-spinel mylonites represent the vestiges of subcontinental mantle ductile shear zones formed at early stages of lithosphere extension during backarc extension in the western Mediterranean. Southward to westward retreat of the African slab during the Oligocene-Early Miocene accounts for intense backarc lithosphere extension and development of the Ronda extensional shear zone, coeval with extreme thinning of the Alboran domain overlying crust.
Geochemistry Geophysics Geosystems | 2007
Timothy J. Reston; T. Leythaeuser; Guillermo Booth-Rea; Dale S. Sawyer; Dirk Klaeschen; C. Long
[1] The existence of normal faults that moved at low angles (less than 20°) has long been debated. One possible low-angle fault is the S detachment at the west Galicia (Spain) margin and thought to occur at the top of serpentinized mantle. It is unlikely that S was a large submarine slide as it was probably active over several million years without the development of any compressional features such as toe thrusts, it appears to have rooted beneath the conjugate Flemish Cap margin, and it is similar to structures elsewhere that also appear to be rooted detachments. Here we analyze depth images to identify synrift sediment packages above S and use the geometry of these synrift packages to constrain the angle at which S both formed and remained active. We find that S must have remained active at angles below 15°, too low to be explained simply by the low friction coefficient of partially serpentinized peridotites. Instead, we suggest that transient high fluid pressures must have developed within the serpentinites and propose a model in which anastomosing fault strands are alternately active and sealed, enabling moderately high fluid pressures to develop.
Journal of the Geological Society | 2013
Károly Hidas; Guillermo Booth-Rea; Carlos J. Garrido; José Miguel Martínez-Martínez; José Alberto Padrón-Navarta; Zoltán Konc; F. Giaconia; Erwin Frets; Claudio Marchesi
To constrain the latest evolutionary stages and mechanisms of exhumation and emplacement of subcontinental peridotites in the westernmost Mediterranean, we present here a detailed structural study of the transition from granular spinel peridotite to plagioclase tectonite in the western Ronda Peridotite (Betic Cordillera, southern Spain). We show that the plagioclase tectonite foliation represents an axial surface particularly well developed in the reverse limb of a downward facing moderately plunging and moderately inclined synform at the base of the Ronda massif. The fold limbs are cut by several mylonitic and ultramylonitic shear zones with top-to-the-SW sense of shear. After restoring the middle to late Miocene vertical-axis palaeomagnetic rotation and the early Miocene tectonic tilting of the massif, these studied structures record southward-directed kinematics. We propose a geodynamic model in which folding and shearing of an attenuated mantle lithosphere occurred by backarc basin inversion during late Oligocene (23–25 Ma) southward collision of the Alborán Domain with the palaeo-Maghrebian passive margin, leading to the intracrustal emplacement of peridotites in the earliest Miocene (21–23 Ma).
Bulletin De La Societe Geologique De France | 2005
Romain Augier; Guillermo Booth-Rea; Phillipe Agard; José Miguel Martínez-Martínez; Laurent Jolivet; José Miguel Azañón
The HP/LT rocks of the Nevado-Filabride complex (eastern Betic Cordillera) were exhumed during the Serravallian but knowledge of their retrograde P-T evolution remains fragmentary and not established for all its tectonic units. The present paper places detailed constraints on the P-T evolution of the two deeper units of the Nevado-Filabride complex, namely the Ragua and the Calar Alto units in order to constrain their exhumation and the role of the km-thick Dos Picos shear zone separating them. Our approach uses both TWEEQU software multiequilibrium thermobarometry and Raman spectrometry thermometry. The study enables to [i] estimate the peak-temperature P-T conditions (c. 520°C) and then to establish the first P-T path of the Ragua unit, [ii] conclude that the Ragua and the Calar Alto units suffered comparable metamorphic evolutions with [iii] a well constrained HT excursion following a strong decompression characterised by limited heating. The study also enables to infer that the major Dos Picos shear zone was a post-metamorphic thrust occurring during the final retrogression stages. These results point to exhumation processes intermediate between those of syn– and post– orogenic contexts during the late evolution of the Betics.
Tectonics | 2008
Guillermo Booth-Rea; Dirk Klaeschen; Ingo Grevemeyer; Timothy J. Reston
We combine structural balancing with thermal and strength-envelope analysis of the Cascadia accretionary wedge to determine the influence thermal gradient has on the structure of the prism. BSR-derived heat flow in the Cascadia accretionary margin decreases from 90–110 mW/m2 at the deformation front to 45–70 mW/m2 in the upper slope. Extension of the thermal gradient to the top of the oceanic crust shows that the base of the prism reaches temperatures between 150–200°C and 250–300°C at the deformation front and the base of the upper slope, respectively. This high thermal gradient favors the development of a vertical strain gradient, which is accommodated by heterogeneous deformation of the accretionary prism. This process produces two overlying thrust wedges, a basal duplex and an overlying landward- or seaward-vergent imbricate stack. The thermal structure also influences the deformation distribution and structural style along the shortening direction. Initiation of plastic deformation at the base of the prism below the Cascadia upper slope affects the wedge geometry, changing its taper angle and favoring the development of a midcrustal duplex structure that propagates seaward as a dynamic backstop. Uplift related with this underplating process is accompanied with deep incision of submarine canyons, sliding and normal faulting in the upper slope. Heterogeneous deformation accommodated by the development of transfer faults separating landward-vergent from seaward-vergent domains is also observed along the margin. Landward-vergent areas accommodate 30–40% shortening at the front of the wedge, while in the narrower and thicker seaward-vergent segments shortening occurs mostly by underplating below the upper slope.
Comptes Rendus Geoscience | 2003
Guillermo Booth-Rea; José Miguel Azañón; Vı́ctor Garcı́a-Dueñas; Romain Augier
The Palomares Fault Zone (PFZ) is one of the main strike-slip brittle shear zones found in the Betics. It is segmented in several faults that have been active between the Upper Tortonian and present day. Data from drill cores in the Palomares area have permitted us to define the geometry and location of sedimentary depocentres related with the PFZ. These data show an eastward displacement between the Upper Tortonian to Messinian and the Pliocene–Quaternary sedimentary depocentres, towards the presently active Arteal fault, which bounds the western mountain front of Sierra Almagrera, showing that deformation along this fault zone has migrated towards the east, from the Palomares segment, with its main activity during the Upper Tortonian and Messinian, towards the Arteal fault, active during the Pliocene and Quaternary. To cite this article: G. Booth-Rea et al.,
Comptes Rendus Geoscience | 2003
Guillermo Booth-Rea; José Miguel Azañón; Vı́ctor Garcı́a-Dueñas; Romain Augier; Mario Sánchez-Gómez
The Santi Petri dome (western Betics, southern Spain) shows a core-complex-like structure, where migmatitic gneisses and schists outcrop below low-grade slates and phyllites, all of which form the basement of the Neogene Malaga basin. The migmatites and schists suffered a coaxial-flattening event during isothermal decompression and were later exhumed by ductile ESE non-coaxial stretching. Further exhumation was achieved by W- to SW-transport brittle low-angle normal faulting. Subsequently these extensional structures were gently folded in the core of a NE/SW-oriented antiform during the Tortonian. Finally the Santi Petri domal geometry was accentuated by the interference of orthogonal high-angle faults with ENE–WSW and NNW–SSE orientation. This core-complex-like structure, formed by superposition of extensional and compressive tectonic events, does not represent a classical, purely extensional core complex, which shows that metamorphic structure and geometry are not decisive criteria to define a core-complex.Abstract The Santi Petri dome (western Betics, southern Spain) shows a core-complex-like structure, where migmatitic gneisses and schists outcrop below low-grade slates and phyllites, all of which form the basement of the Neogene Malaga basin. The migmatites and schists suffered a coaxial-flattening event during isothermal decompression and were later exhumed by ductile ESE non-coaxial stretching. Further exhumation was achieved by W- to SW-transport brittle low-angle normal faulting. Subsequently these extensional structures were gently folded in the core of a NE/SW-oriented antiform during the Tortonian. Finally the Santi Petri domal geometry was accentuated by the interference of orthogonal high-angle faults with ENE–WSW and NNW–SSE orientation. This core-complex-like structure, formed by superposition of extensional and compressive tectonic events, does not represent a classical, purely extensional core complex, which shows that metamorphic structure and geometry are not decisive criteria to define a core-complex.
Tectonics | 2014
Flavio Giaconia; Guillermo Booth-Rea; José Miguel Martínez-Martínez; José Miguel Azañón; Fabrizio Storti; Andrea Artoni
Large strike-slip faults in the eastern Betics are interpreted to have developed in a transcurrent setting in response to 4–6 mm/yr of Africa-Iberia NW-SE convergence. However, here we show that some of these faults are transfer faults accommodating heterogeneous late Miocene extension. The North Cabrera dextral fault and other E-W to NE-SW strike-slip faults in the Sorbas basin were transfer faults produced under SW-NE extension. These faults together with related normal faults form the main boundaries of two sedimentary depocenters active between the Serravallian and the Tortonian. The older North Cabrera depocenter extended between the Serravallian and the early Tortonian (approximately 13.8 to 9 Ma), while the younger Gacia depocenter formed in response to late Tortonian extension (approximately 9 to 7.5 Ma). The latter formed to the west of the North Cabrera depocenter by a listric fan of normal faults with SW directed transport that are linked by dextral and sinistral transfer fault segments. These faults root on a low-angle detachment cutting into the exhumed high-pressure Nevado-Filabride complex rocks at ~0.8 km depth. The present work reveals that (1) this extension was partially coeval with and kinematically linked to sinistral displacement along the Carboneras fault farther south in the Nijar basin; (2) this westward directed extension produced elongated core complexes and tilted blocks to the north of the Carboneras fault and magmatic accretion upon thinned continental crust to the south, probably in response to slab tearing or detachment and associated edge delamination of the Iberian continental lithospheric mantle beneath the Betics.
Tectonics | 2015
Flavio Giaconia; Guillermo Booth-Rea; César R. Ranero; Eulàlia Gràcia; Rafael Bartolomé; Alcinoe Calahorrano; Claudio Lo Iacono; M. G. Vendrell; Alejandra L. Cameselle; Sergio Costa; Laura Gómez de la Peña; S. Martínez-Loriente; Héctor Perea; Marina Viñas
Interpretation of new multichannel seismic reflection profiles indicates that the Palomares margin was formed by crustal-scale extension and coeval magmatic accretion during middle to late Miocene opening of the Algero-Balearic basin. The margin formed at the transition between thinned continental crust intruded by arc volcanism and back-arc oceanic crust. Deformation produced during the later positive inversion of the margin offshore and onshore is partitioned between ~N50°E striking reverse faults and associated folds like the Sierra Cabrera and Abubacer anticlines and N10–20°E sinistral strike-slip faults like Palomares and Terreros faults. Parametric subbottom profiles and multibeam bathymetry offshore, structural analysis, available GPS geodetic displacement data, and earthquake focal mechanisms jointly indicate that tectonic inversion of the Palomares margin is currently active. The Palomares margin shows a structural pattern comparable to the north Maghrebian margins where Africa-Eurasia plate convergence is accommodated by NE-SW reverse faults, NNW-SSE sinistral faults, and WNW-ESE dextral ones. Contractive structures at this margin contribute to the general inversion of the Western Mediterranean since ~7 Ma, coeval to inversion at the Algerian margin. Shortening at the Alboran ridge and Al-Idrisi faults occurred later, since 5 Ma, indicating a westward propagation of the compressional inversion of the Western Mediterranean.