Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Guillermo de Cárcer is active.

Publication


Featured researches published by Guillermo de Cárcer.


Molecular and Cellular Biology | 1998

Localization of Atypical Protein Kinase C Isoforms into Lysosome-Targeted Endosomes through Interaction with p62

Pilar Sánchez; Guillermo de Cárcer; Ignacio V. Sandoval; Jorge Moscat; Maria T. Diaz-Meco

ABSTRACT An increasing number of independent studies indicate that the atypical protein kinase C (PKC) isoforms (aPKCs) are critically involved in the control of cell proliferation and survival. The aPKCs are targets of important lipid mediators such as ceramide and the products of the PI 3-kinase. In addition, the aPKCs have been shown to interact with Ras and with two novel proteins, LIP (lambda-interacting protein; a selective activator of λ/ιPKC) and the product ofpar-4 (a gene induced during apoptosis), which is an inhibitor of both λ/ιPKC and ζPKC. LIP and Par-4 interact with the zinc finger domain of the aPKCs where the lipid mediators have been shown to bind. Here we report the identification of p62, a previously described phosphotyrosine-independent p56 lck SH2-interacting protein, as a molecule that interacts potently with the V1 domain of λ/ιPKC and, albeit with lower affinity, with ζPKC. We also show in this study that ectopically expressed p62 colocalizes perfectly with both λ/ιPKC and ζPKC. Interestingly, the endogenous p62, like the ectopically expressed protein, displays a punctate vesicular pattern and clearly colocalizes with endogenous λ/ιPKC and endogenous ζPKC. P62 colocalizes with Rab7 and partially with lamp-1 and limp-II as well as with the epidermal growth factor (EGF) receptor in activated cells, but not with Rab5 or the transferrin receptor. Of functional relevance, expression of dominant negative λ/ιPKC, but not of the wild-type enzyme, severely impairs the endocytic membrane transport of the EGF receptor with no effect on the transferrin receptor. These findings strongly suggest that the aPKCs are anchored by p62 in the lysosome-targeted endosomal compartment, which seems critical for the control of the growth factor receptor trafficking. This is particularly relevant in light of the role played by the aPKCs in mitogenic cell signaling events.


Cancer Cell | 2010

Targeting Mitotic Exit Leads to Tumor Regression In Vivo: Modulation by Cdk1, Mastl, and the PP2A/B55α,δ Phosphatase

Eusebio Manchado; María Guillamot; Guillermo de Cárcer; Manuel Eguren; Michelle Trickey; Irene García-Higuera; Sergio Moreno; Hiroyuki Yamano; Marta Cañamero; Marcos Malumbres

Targeting mitotic exit has been recently proposed as a relevant therapeutic approach against cancer. By using genetically engineered mice, we show that the APC/C cofactor Cdc20 is essential for anaphase onset in vivo in embryonic or adult cells, including progenitor/stem cells. Ablation of Cdc20 results in efficient regression of aggressive tumors, whereas current mitotic drugs display limited effects. Yet, Cdc20 null cells can exit from mitosis upon inactivation of Cdk1 and the kinase Mastl (Greatwall). This mitotic exit depends on the activity of PP2A phosphatase complexes containing B55α or B55δ regulatory subunits. These data illustrate the relevance of critical players of mitotic exit in mammals and their implications in the balance between cell death and mitotic exit in tumor cells.


Cell Cycle | 2011

From Plk1 to Plk5: Functional evolution of polo-like kinases

Guillermo de Cárcer; Gerard Manning; Marcos Malumbres

Mammalian polo-like kinases (Plks) are characterized by the presence of an N-terminal protein kinase domain and a C-terminal polo-box domain (PBD) involved in substrate binding and regulation of kinase activity. Plk1-4 have traditionally been linked to cell cycle progression, genotoxic stress and, more recently, neuron biology. Recently, a fifth mammalian Plk family member, Plk5, has been characterized in murine and human cells. Plk5 is expressed mainly in differentiated tissues such as the cerebellum. Despite apparent loss of catalytic activity and a stop codon in the middle of the human gene, Plk5 proteins retain important functions in neuron biology. Notably, its expression is silenced by epigenetic alterations in brain tumors, such as glioblastomas, and its re-expression prevents cell proliferation of these tumor cells. In this review, we will focus on the non-cell cycle roles of Plks, the biology of the new member of the family and the possible kinase- and PBD-independent functions of polo-like kinases.


Current Medicinal Chemistry | 2007

Targeting Cell Cycle Kinases for Cancer Therapy

Guillermo de Cárcer; Ignacio Pérez de Castro; Marcos Malumbres

Many tumor-associated mutations result in the abnormal regulation of protein kinases involved in the progression throughout the cell division cycle. The cyclin-dependent kinase (CDK) family has received special attention due to their function as sensors of the mitogenic signals and their central role in cell proliferation. These kinases are frequently upregulated in human cancer most frequently due to overexpression of their cyclin partners or inactivation of the CDK inhibitors. A plethora of small-molecule CDK inhibitors have been characterized in the last years and some of them are currently under clinical development. Other serine-threonine protein kinases such as the Aurora proteins (mostly Aurora A and B) or Polo-like kinases (PLK1) are receiving increased attention as putative cancer targets. Other less studied mitotic kinases such TTK (MPS1), BUB and NEK proteins might also be relevant candidates as new targets of interest in cancer therapy since they play relevant roles on mitotic progression and the spindle checkpoint. Although targeting cell cycle kinases is an efficient procedure to arrest cell proliferation, the best strategy to potently and specifically inhibit tumor cell proliferation is not obvious yet. Thus, some cell cycle kinases may be of interest as targets to abrogate checkpoints and favor apoptotic cell death in tumor cells. New biochemical and genetic studies are required to clarify the use of these kinases as targets in new opportunities to improve cancer therapy.


Nature Structural & Molecular Biology | 2011

Crystal structure of the open conformation of the mammalian chaperonin CCT in complex with tubulin

Inés G. Muñoz; Hugo Yébenes; Min Zhou; Pablo Mesa; Marina Serna; Ah Young Park; Elisabeth Bragado-Nilsson; Ana Beloso; Guillermo de Cárcer; Marcos Malumbres; Carol V. Robinson; José M. Valpuesta; Guillermo Montoya

Protein folding is assisted by molecular chaperones. CCT (chaperonin containing TCP-1, or TRiC) is a 1-MDa oligomer that is built by two rings comprising eight different 60-kDa subunits. This chaperonin regulates the folding of important proteins including actin, α-tubulin and β-tubulin. We used an electron density map at 5.5 Å resolution to reconstruct CCT, which showed a substrate in the inner cavities of both rings. Here we present the crystal structure of the open conformation of this nanomachine in complex with tubulin, providing information about the mechanism by which it aids tubulin folding. The structure showed that the substrate interacts with loops in the apical and equatorial domains of CCT. The organization of the ATP-binding pockets suggests that the substrate is stretched inside the cavity. Our data provide the basis for understanding the function of this chaperonin.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Molecular and structural basis of polo-like kinase 1 substrate recognition: Implications in centrosomal localization

Begoña García-Álvarez; Guillermo de Cárcer; Sonia Ibañez; Elisabeth Bragado-Nilsson; Guillermo Montoya

Polo-like kinase (Plk1) is crucial for cell cycle progression through mitosis. Here we present the molecular and structural mechanisms that regulate the substrate recognition of Plk1 and influence its centrosomal localization and activity. Our work shows that Plk1 localization is controlled not only by the polo box domain (PBD); remarkably, the kinase domain is also involved in Plk1 targeting mechanism to the centrosome. The crystal structures of the PBD in complex with Cdc25C and Cdc25C-P target peptides reveal that Trp-414 is fundamental in their recognition regardless of its phosphorylation status. Binding measurements demonstrate that W414F mutation abolishes molecular recognition and diminishes centrosomal localization. Therefore, Plk1 centrosomal localization is not controlled by His-538 and Lys-540, the residues involved in phosphorylated target binding. The different conformations of the loop, which connects the polo boxes in the apo and the PBD-Cdc25C and PBD-Cdc25C-P complex structures, together with changes in the proline adjacent to the phosphothreonine in the target peptide, suggest a regulatory mechanism to detect binding of unphosphorylated or phosphorylated target substrates. Altogether, these data propose a model for the interaction between Plk1 and Cdc25C.


Molecular and Cellular Biology | 2011

Plk5, a polo box domain-only protein with specific roles in neuron differentiation and glioblastoma suppression.

Guillermo de Cárcer; Beatriz Escobar; Alonso M. Higuero; Laura García; Alejandra Ansón; Gema Pérez; Manuela Mollejo; Gerard Manning; Bárbara Meléndez; José Abad-Rodríguez; Marcos Malumbres

ABSTRACT Polo-like kinases (Plks) are characterized by the presence of a specific domain, known as the polo box (PBD), involved in protein-protein interactions. Plk1 to Plk4 are involved in centrosome biology as well as the regulation of mitosis, cytokinesis, and cell cycle checkpoints in response to genotoxic stress. We have analyzed here the new member of the vertebrate family, Plk5, a protein that lacks the kinase domain in humans. Plk5 does not seem to have a role in cell cycle progression; in fact, it is downregulated in proliferating cells and accumulates in quiescent cells. This protein is mostly expressed in the brain of both mice and humans, and it modulates the formation of neuritic processes upon stimulation of the brain-derived neurotrophic factor (BDNF)/nerve growth factor (NGF)-Ras pathway in neurons. The human PLK5 gene is significantly silenced in astrocytoma and glioblastoma multiforme by promoter hypermethylation, suggesting a tumor suppressor function for this gene. Indeed, overexpression of Plk5 has potent apoptotic effects in these tumor cells. Thus, Plk5 seems to have evolved as a kinase-deficient PBD-containing protein with nervous system-specific functions and tumor suppressor activity in brain cancer.


Molecular Cell | 2012

HIF2α Acts as an mTORC1 Activator through the Amino Acid Carrier SLC7A5

Ainara Elorza; Inés Soro-Arnáiz; Florinda Meléndez-Rodríguez; Victoria Rodríguez-Vaello; Glenn Marsboom; Guillermo de Cárcer; Bárbara Acosta-Iborra; Lucas Albacete-Albacete; Angel Ordoñez; Leticia Serrano-Oviedo; José M. Giménez-Bachs; Alicia Vara-Vega; Antonio Salinas; Ricardo Sánchez-Prieto; Rafael Martín del Río; Francisco Sánchez-Madrid; Marcos Malumbres; Manuel O. Landázuri; Julián Aragonés

The mammalian target of rapamycin (mTOR) pathway, which is essential for cell proliferation, is repressed in certain cell types in hypoxia. However, hypoxia-inducible factor 2α (HIF2α) can act as a proliferation-promoting factor in some biological settings. This paradoxical situation led us to study whether HIF2α has a specific effect on mTORC1 regulation. Here we show that activation of the HIF2α pathway increases mTORC1 activity by upregulating expression of the amino acid carrier SLC7A5. At the molecular level we also show that HIF2α binds to the Slc7a5 proximal promoter. Our findings identify a link between the oxygen-sensing HIF2α pathway and mTORC1 regulation, revealing the molecular basis of the tumor-promoting properties of HIF2α in von Hippel-Lindau-deficient cells. We also describe relevant physiological scenarios, including those that occur in liver and lung tissue, wherein HIF2α or low-oxygen tension drive mTORC1 activity and SLC7A5 expression.


Molecular and Cellular Biology | 2009

TRF1 Controls Telomere Length and Mitotic Fidelity in Epithelial Homeostasis

Purificación Muñoz; Raquel Blanco; Guillermo de Cárcer; Stefan Schoeftner; Roberta Benetti; Juana M. Flores; Marcos Malumbres; Maria A. Blasco

ABSTRACT TRF1 is a component of the shelterin complex at mammalian telomeres; however, a role for TRF1 in telomere biology in the context of the organism is unclear. In this study, we generated mice with transgenic TRF1 expression targeted to epithelial tissues (K5TRF1 mice). K5TRF1 mice have shorter telomeres in the epidermis than wild-type controls do, and these are rescued in the absence of the XPF nuclease, indicating that TRF1 acts as a negative regulator of telomere length by controlling XPF activity at telomeres, similar to what was previously described for TRF2-overexpressing mice (K5TRF2 mice). K5TRF1 cells also show increased end-to-end chromosomal fusions, multitelomeric signals, and increased telomere recombination, indicating an impact of TRF1 on telomere integrity, again similar to the case in K5TRF2 cells. Intriguingly, K5TRF1 cells, but not K5TRF2 cells, show increased mitotic spindle aberrations. TRF1 colocalizes with the spindle assembly checkpoint proteins BubR1 and Mad2 at mouse telomeres, indicating a link between telomeres and the mitotic spindle. Together, these results demonstrate that TRF1, like TRF2, negatively regulates telomere length in vivo by controlling the action of the XPF nuclease at telomeres; in addition, TRF1 has a unique role in the mitotic spindle checkpoint.


Current Opinion in Pharmacology | 2008

Emerging cancer therapeutic opportunities by inhibiting mitotic kinases.

Ignacio Pérez de Castro; Guillermo de Cárcer; Guillermo Montoya; Marcos Malumbres

Among cellular kinases, several cell cycle protein kinases play critical roles in mitotic entry and chromosome segregation. Inhibition of these proteins frequently results in dramatic mitotic arrest and subsequent apoptosis. Most drug discovery efforts have been directed against members of the cyclin-dependent kinase (CDK), Aurora and Polo-like kinase families. Inhibition of these proteins with small molecules has emerged as a powerful research tool and their clinical use is currently being tested in phase I and phase II trials for cancer therapy. New unexplored kinases or new protein domains distinct to the kinase pocket are now being evaluated for the next generation of mitotic drugs. The therapeutic value of inhibiting these kinases will improve with the availability of new specific and potent inhibitors, but it will also rely on a better knowledge of the physiological requirement for these proteins in normal and tumor cell cycles.

Collaboration


Dive into the Guillermo de Cárcer's collaboration.

Top Co-Authors

Avatar

Marcos Malumbres

Instituto de Salud Carlos III

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Beatriz Escobar

Centro Nacional de Investigaciones Cardiovasculares

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marta Cañamero

Instituto de Salud Carlos III

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Francisco-Javier Medina

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rocio Sotillo

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Elisabeth Bragado-Nilsson

European Bioinformatics Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge