Guillermo García-Alías
University of California, Los Angeles
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Guillermo García-Alías.
Nature Neuroscience | 2009
Guillermo García-Alías; Stanley Barkhuysen; Miranda Buckle; James W. Fawcett
Chondroitinase ABC treatment promotes spinal cord plasticity. We investigated whether chondroitinase-induced plasticity combined with physical rehabilitation promotes recovery of manual dexterity in rats with cervical spinal cord injuries. Rats received a C4 dorsal funiculus cut followed by chondroitinase ABC or penicillinase as a control. They were assigned to two alternative rehabilitation procedures, the first reinforcing skilled reaching and the second reinforcing general locomotion. Chondroitinase treatment enhanced sprouting of corticospinal axons independently of the rehabilitation regime. Only the rats receiving the combination of chondroitinase and specific rehabilitation showed improved manual dexterity. Rats that received general locomotor rehabilitation were better at ladder walking, but had worse skilled-reaching abilities than rats that received no treatment. Our results indicate that chondroitinase treatment opens a window during which rehabilitation can promote recovery. However, only the trained skills are improved and other functions may be negatively affected.
Journal of Neuroscience Research | 2004
Guillermo García-Alías; Rubèn López-Vales; Joaquim Forés; Xavier Navarro; Enrique Verdú
We compared the neurological and electrophysiological outcome, glial reactivity, and spared spinal cord connectivity promoted by acute transplantation of olfactory ensheathing cells (group OEC) or Schwann cells (group SC) after a mild injury to the rat spinal cord. Animals were subjected to a photochemical injury of 2.5 min irradiation at the T8 spinal cord segment. After lesion, a suspension containing 180,000 OECs or SCs was injected. A control group (group DM) received the vehicle alone. During 3 months postsurgery, behavioral skills were assessed with open field‐BBB scale, inclined plane, and thermal algesimetry tests. Motor (MEPs) and somatosensory evoked potentials (SSEPs) were performed to evaluate the integrity of spinal cord pathways, whereas lumbar spinal reflexes were evaluated by the H reflex responses. Glial fibrillary acidic protein and proteoglycan expressions were quantified immunohistochemically at the injured spinal segments, and the preservation of corticospinal and raphespinal tracts caudal to the lesion was evaluated. Both OEC‐ and SC‐transplanted groups showed significantly better results in all the behavioral tests than the DM group. Furthermore, the OEC group had higher MEP amplitudes and lower H responses than the other two groups. At the injury site, the area of spared parenchyma was greater in transplanted than in control injured rats. OEC‐transplanted animals had reduced astrocytic reactivity and proteoglycan expression in comparison with SC‐transplanted and DM rats. Taken together, these results indicate that transplantation of both OEC and SC has potential for restoration of injured spinal cords. OEC grafts showed superior ability to reduce glial reactivity and to improve functional recovery.
Glia | 2003
Enrique Verdú; Guillermo García-Alías; Joaquim Forés; Rubèn López-Vales; Xavier Navarro
We studied the effects of olfactory ensheathing cells (OECs) transplanted in a photochemical spinal cord injury in adult rats. After dorsal laminectomy at T8 vertebra, subjacent spinal cord was bathed with rose Bengal for 10 min and illuminated with visible light by means of an optic fiber connected to a halogen lamp for 2.5 min at maximal intensity of 8 kLux. Eight injured rats received a suspension of OECs in DMEM, and another eight rats received DMEM alone. Locomotor ability scored by the BBB scale, pain sensibility by the plantar algesimetry test, and motor‐ and somatosensory‐evoked potentials by electrophysiological techniques were evaluated for 3 months postsurgery. Finally, all rats were perfused with paraformaldehyde and transverse sections from the spinal cord segment at the lesion site were immunostained against GFAP. Area of the preserved spinal cord parenchyma was measured from the GFAP‐immunolabeled cord sections. The BBB score and the amplitude of motor‐ and somatosensory‐evoked potentials were higher in OECs‐transplanted rats than in DMEM‐injected animals throughout follow‐up, whereas the withdrawal response to heat noxious stimulus was lower in OEC‐ than in DMEM‐injected rats. The area of preserved spinal cord was significantly larger in OECs‐transplanted rats than in DMEM‐injected animals. These results indicate that OECs promote functional and morphological preservation of the spinal cord after photochemical injury. GLIA 42:275–286, 2003.
Experimental Neurology | 2008
Guillermo García-Alías; Rachel Lin; Sonia F. Akrimi; David Story; Elizabeth J. Bradbury; James W. Fawcett
Rats with a crush in the dorsal funiculi of the C4 segment of the spinal cord were treated with chondroitinase ABC delivered to the lateral ventricle, receiving 6 intraventricular injections on alternate days. In order to investigate the time window of efficacy of chondroitinase, treatment was begun at the time of injury or after a 2, 4 or 7 days delay. Behavioural testing over 6 weeks showed that acutely treated animals showed improved skilled forelimb reaching compared to penicillinase controls. Forelimb contact placing recovered in treated animals but not controls, and gait analysis showed recovery towards normal forelimb stride length in treated animals but not controls. Chondroitinase-treated animals showed greater axon regeneration than controls. The treatment effect on contact placing, stride length and axon regeneration was not dependent on the timing of the start of treatment, but in skilled paw reaching acutely treated animals recovered better function. The area of chondroitinase ABC digestion visualized by stub antibody staining included widespread digestion around the lateral ventricles and partial digestion of cervical spinal cord white matter, but not grey matter.
Neuroreport | 2001
Enrique Verdú; Guillermo García-Alías; Joaquim Forés; Graciela Gudiño-Cabrera; Vilma Munetón; Manuel Nieto-Sampedro; Xavier Navarro
Transplantation of olfactory ensheathing cells (OECs) into photochemically damaged rat spinal cord diminished astrocyte reactivity and parenchyma cavitation. The photochemical lesion performed at T12–L1 resulted in severe damage to the spinal cord, so that during the first 15 days postoperation all rats dragged their hindlimbs and did not respond to pinprick. The maximal area and volume of the cystic cavities were lower in transplanted than in non-transplanted rats, not significantly at the T12–L1 lesion site, but significantly at T9–T10 and L4–L6 cord levels. The density of astrocytes in the grey matter was similar at T12–L1 and L4–L6 in non-transplanted and trans- planted rats, but lower in the latter at T9–T10 level. However, in non-transplanted rats all astrocytes showed a hypertrophied appearance, with long and robust processes heavily GFAP-positive, and overexpression of proteoglycan inhibitor of neuritogenesis, whereas in transplanted rats only a few astrocytes showed hypertrophy and the majority had short, thin processes. These results indicate that OECs transplanted into damaged adult rat spinal cord exert a neuroprotective role by reducing astrocytic gliosis and cystic cavitation.
The Journal of Neuroscience | 2011
Guillermo García-Alías; Hayk A. Petrosyan; Lisa Schnell; Philip J. Horner; William J. Bowers; Lorne M. Mendell; James W. Fawcett; Victor L. Arvanian
Elevating spinal levels of neurotrophin NT-3 (NT3) while increasing expression of the NR2D subunit of the NMDA receptor using a HSV viral construct promotes formation of novel multisynaptic projections from lateral white matter (LWM) axons to motoneurons in neonates. However, this treatment is ineffective after postnatal day 10. Because chondroitinase ABC (ChABC) treatment restores plasticity in the adult CNS, we have added ChABC to this treatment and applied the combination to adult rats receiving a left lateral hemisection (Hx) at T8. All hemisected animals initially dragged the ipsilateral hindpaw and displayed abnormal gait. Rats treated with ChABC or NT3/HSV-NR2D recovered partial hindlimb locomotor function, but animals receiving combined therapy displayed the most improved body stability and interlimb coordination [Basso-Beattie-Bresnahan (BBB) locomotor scale and gait analysis]. Electrical stimulation of the left LWM at T6 did not evoke any synaptic response in ipsilateral L5 motoneurons of control hemisected animals, indicating interruption of the white matter. Only animals with the full combination treatment recovered consistent multisynaptic responses in these motoneurons indicating formation of a detour pathway around the Hx. These physiological findings were supported by the observation of increased branching of both cut and intact LWM axons into the gray matter near the injury. ChABC-treated animals displayed more sprouting than control animals and those receiving NT3/HSV-NR2D; animals receiving the combination of all three treatments showed the most sprouting. Our results indicate that therapies aimed at increasing plasticity, promoting axon growth and modulating synaptic function have synergistic effects and promote better functional recovery than if applied individually.
The Journal of Neuroscience | 2010
Arsen S. Hunanyan; Guillermo García-Alías; Valentina Alessi; Joel M. Levine; James W. Fawcett; Lorne M. Mendell; Victor L. Arvanian
Chronic unilateral hemisection (HX) of the adult rat spinal cord diminishes conduction through intact fibers in the ventrolateral funiculus (VLF) contralateral to HX. This is associated with a partial loss of myelination from fibers in the VLF (Arvanian et al., 2009). Here, we again measured conduction through the VLF using electrical stimulation while recording the resulting volley and synaptic potentials in target motoneurons. We found that intraspinal injection of chondroitinase-ABC, known to digest chondroitin sulfate proteoglycans (CSPGs), prevented the decline of axonal conduction through intact VLF fibers across from chronic T10 HX. Chondroitinase treatment was also associated with behavior suggestive of an improvement of locomotor function after chronic HX. To further study the role of CSPGs in axonal conduction, we injected three purified CSPGs, NG2 and neurocan, which increase in the vicinity of a spinal injury, and aggrecan, which decreases, into the lateral column of the uninjured cord at T10 in separate experiments. Intraspinal injection of NG2 acutely depressed axonal conduction through the injected region in a dose-dependent manner. Similar injections of saline, aggrecan, or neurocan had no significant effect. Immunofluorescence staining experiments revealed the presence of endogenous and exogenous NG2 at some nodes of Ranvier. These results identify a novel acute action of CSPGs on axonal conduction in the spinal cord and suggest that antagonism of proteoglycans reverses or prevents the decline of axonal conduction, in addition to stimulating axonal growth.
Journal of Neurotrauma | 2004
Rubèn López-Vales; Guillermo García-Alías; Joaquim Forés; Xavier Navarro; Enrique Verdú
Olfactory ensheathing cells (OECs) were transplanted in adult rats after photochemical injury of the spinal cord. Rats received either 180,000 OECs suspended in DMEM or DMEM alone. Locomotor ability scored by the BBB-scale, pain sensibility, and motor and somatosensory evoked potentials were evaluated during the first 14 days post-surgery. At 3, 7, and 14 days, 5 rats per day of both groups were perfused and transverse sections from proximal, lesioned and distal spinal cord blocks were stained for COX-2, VEGF, GFAP and lectin. The BBB-score and the amplitude of motor and somatosensory evoked potentials were significantly higher in OEC- than in DMEM-injected animals throughout follow-up, whereas the withdrawal latency to heat noxious stimulus was lower in OEC- than in DMEM-injected rats. The area of preserved spinal cord and the levels of COX-2 and VEGF staining were significantly higher in OEC- than in DMEM-injected rats. GFAP- but no LEC-positive cells expressed COX-2 staining in OEC-transplanted rats. The density of blood vessels was also significantly increased in OEC- with respect to DMEM-injected rats. Our results show that OECs promote functional and morphological preservation of the spinal cord after photochemical injury, increasing neoangiogenesis and up-regulation of COX-2 and VEGF expression in astrocytes.
Journal of Neuroscience Research | 2005
Rubèn López-Vales; Guillermo García-Alías; Joaquim Forés; Esther Udina; Bruce G. Gold; Xavier Navarro; Enrique Verdú
We examined the efficacy of FK506 in reducing tissue damage after spinal cord injury in comparison to methylprednisolone (MP) treatment. Rats were subjected to a photochemical injury (T8) and were given a bolus of MP (30 mg/kg), FK506 (2 mg/kg), or saline. An additional group received an initial bolus of FK506 (2 mg/kg) followed by daily injections (0.2 mg/kg intraperitoneally). Functional recovery was evaluated using open‐field walking, inclined plane tests, motor evoked potentials (MEPs), and the H‐reflex response during 14 days postoperation (dpo). Tissue sparing and glial fibrillary acidic protein (GFAP), biotinylated tomato lectin LEC, cyclooxygenase‐2 (COX‐2), inducible nitric oxide synthase (iNOS), and interleukin 1β (IL‐1β) immunoreactivity were quantified in the injured spinal cord. FK506‐treated animals demonstrated significantly better neurologic outcome, higher MEP amplitudes, and lower H‐wave amplitude compared to that of saline‐treated rats. In contrast, administration of MP did not result in significant differences with respect to the saline‐treated group. Histologic examination revealed that tissue sparing was largest in FK506‐treated compared to saline and MP‐treated animals. GFAP and COX‐2 reactivity was decreased in animals treated with FK506 compared to that in animals given MP or saline, whereas IL‐1β expression was similarly reduced in both FK506‐ and MP‐treated groups. Microglia/macrophage response was reduced in FK506 and MP‐injected animals at 3 dpo, but only in MP‐treated animals at 7 dpo with respect to saline‐injected rats. Repeated administrations of FK506 improved functional and histologic results to a greater degree than did a single bolus of FK506. The results indicate that FK506 administration protects the damaged spinal cord and should be considered as potential therapy for treating spinal cord injuries.
Experimental Neurology | 2012
Guillermo García-Alías; James W. Fawcett
Combining different therapies is a promising strategy to promote spinal cord repair, by targeting axon plasticity and functional circuit reconnectivity. In particular, digestion of chondroitin sulphate proteoglycans at the site of the injury by the activity of the bacterial enzyme chondrotinase ABC, together with the development of intensive task specific motor rehabilitation has shown synergistic effects to promote behavioural recovery. This review describes the mechanisms by which chondroitinase ABC and motor rehabilitation promote neural plasticity and we discuss their additive and independent effects on promoting behavioural recovery.