Guillermo Mendoza-Hernández
National Autonomous University of Mexico
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Guillermo Mendoza-Hernández.
Plant Physiology | 2003
Robert van Lis; Ariane Atteia; Guillermo Mendoza-Hernández; Diego González-Halphen
Pure mitochondria of the photosynthetic algaChlamydomonas reinhardtii were analyzed using blue native-polyacrylamide gel electrophoresis (BN-PAGE). The major oxidative phosphorylation complexes were resolved: F1F0-ATP synthase, NADH-ubiquinone oxidoreductase, ubiquinol-cytochrome c reductase, and cytochrome c oxidase. The oligomeric states of these complexes were determined. The F1F0-ATP synthase runs exclusively as a dimer, in contrast to the C. reinhardtii chloroplast enzyme, which is present as a monomer and subcomplexes. The sequence of a 60-kD protein, associated with the mitochondrial ATP synthase and with no known counterpart in any other organism, is reported. This protein may be related to the strong dimeric character of the algal F1F0-ATP synthase. The oxidative phosphorylation complexes resolved by BN-PAGE were separated into their subunits by second dimension sodium dodecyl sulfate-PAGE. A number of polypeptides were identified mainly on the basis of their N-terminal sequence. Core I and II subunits of complex III were characterized, and their proteolytic activities were predicted. Also, the heterodimeric nature of COXIIA and COXIIB subunits in cytochrome c oxidase was demonstrated. Other mitochondrial proteins like the chaperone HSP60, the alternative oxidase, the aconitase, and the ADP/ATP carrier were identified. BN-PAGE was also used to approach the analysis of the major chloroplast protein complexes of C. reinhardtii.
Biochemical Journal | 2001
M. Magdalena Vilchis-Landeros; Jose L. Montiel; Valentín Mendoza; Guillermo Mendoza-Hernández; Fernando López-Casillas
Betaglycan is an accessory receptor of members of the transforming growth factor-beta (TGF-beta) superfamily, which regulates their actions through ligand-dependent interactions with type II receptors. A natural soluble form of betaglycan is found in serum and extracellular matrices. Soluble betaglycan, prepared as a recombinant protein using the baculoviral expression system, inhibits the actions of TGF-beta. Because of its potential use as an anti-TGF-beta therapeutic agent, we have purified and characterized baculoviral recombinant soluble betaglycan. Baculoviral soluble betaglycan is a homodimer formed by two 110 kDa monomers associated by non-covalent interactions. This protein is devoid of glycosaminoglycan chains, although it contains the serine residues, which, in vertebrate cells, are modified by these carbohydrates. On the other hand, mannose-rich carbohydrates account for approximately 20 kDa of the mass of the monomer. End-terminal sequence analysis of the soluble betaglycan showed that Gly(24) is the first residue of the mature protein. Similarly to the natural soluble betaglycan, baculoviral soluble betaglycan has an equilibrium dissociation constant (K(d)) of 3.5 nM for TGF-beta1. Ligand competition assays indicate that the relative affinities of recombinant soluble betaglycan for the TGF-beta isoforms are TGF-beta2>TGF-beta3>TGF-beta1. The anti-TGF-beta potency of recombinant soluble betaglycan in vitro is 10-fold higher for TGF-beta2 than for TGF-beta1. Compared with a commercial pan-specific anti-TGF-beta neutralizing antibody, recombinant soluble betaglycan is more potent against TGF-beta2 and similar against TGF-beta1. These results indicate that baculoviral soluble betaglycan has the biochemical and functional properties that would make it a suitable agent for the treatment of the diseases in which excess TGF-beta plays a central physiopathological role.
Infection and Immunity | 2000
Jorge M. Villaseca; Fernando Navarro-Garcia; Guillermo Mendoza-Hernández; James P. Nataro; Alejandro Cravioto; Carlos Eslava
ABSTRACT Pet toxin is a serine protease from enteroaggregativeEscherichia coli which has been described as causing enterotoxic and cytotoxic effects. In this paper we show that Pet produces spectrin and fodrin (nonerythroid spectrin) disruption. Using purified erythrocyte membranes treated with Pet toxin, we observed degradation of α- and β-spectrin chains; this effect was dose and time dependent, and a 120-kDa protein fraction was observed as a breakdown product. Spectrin degradation and production of the 120-kDa subproduct were confirmed using specific antibodies against the α- and β-spectrin chains. The same degradation effect was observed in α-fodrin from epithelial HEp-2 cells, both in purified cell membranes and in cultured cells which had been held in suspension for 36 h; these effects were confirmed using antifodrin rabbit antibodies. The spectrin and fodrin degradation caused by Pet is related to the Pet serine protease motif. Fluorescence and light microscopy of HEp-2 Pet-treated cells showed morphological alterations, which were associated with irregular distribution of fodrin in situ. Spectrin and fodrin degradation by Pet toxin were inhibited by anti-Pet antibodies and by phenylmethylsulfonyl fluoride. A site-directed Pet mutant, which had been shown to abolish the enterotoxic and cytotoxic effects of Pet, was unable to degrade spectrin in erythrocyte membranes or purified spectrin or fodrin in epithelial cell assays. This is a new system of cellular damage identified in bacterial toxins which includes the internalization of the protease, induction of some unknown intermediate signaling steps, and finally the fodrin degradation to destroy the cell.
Journal of Proteome Research | 2009
Margarita González-Zamorano; Guillermo Mendoza-Hernández; Wendy Xolalpa; Cristina Parada; Antonio J. Vallecillo; Fabiana Bigi; Clara Espitia
A Mycobacterium tuberculosis culture filtrate enriched with mannose-containing proteins was resolved by 2-DE gel. After ConA ligand blotting, 41 proteins were identified by mass spectrometry as putative glycoproteins with 34 of them new probably mannosylated proteins. These results contribute to the construction of the ConA affinity glycoprotein database of M. tuberculosis, and provide useful information for understanding the biological role of glycoproteins in mycobacteria.
Journal of Biological Chemistry | 2002
Martha Robles-Flores; Erika Rendón-Huerta; Héctor González-Aguilar; Guillermo Mendoza-Hernández; Socorro Islas; Valentín Mendoza; M. Verónica Ponce-Castañeda; Lorenza González-Mariscal; Fernando López-Casillas
The aim of this study was to identify cellular proteins that bind protein kinase C (PKC) and may influence its activity and its localization. A 32-kDa PKC-binding protein was purified to homogeneity from the Triton X-100-insoluble fraction obtained from hepatocytes homogenates. The protein was identified by NH2-terminal amino acid sequencing as the previously described mature form of p32 (gC1qR). Recombinant p32 was expressed as a glutathione S-transferase fusion protein, affinity-purified, and tested for an in vitro interaction with PKC using an overlay assay approach. All PKC isoforms expressed in rat hepatocytes interacted in vitro with p32, but the binding dependence on PKC activators was different for each one. Whereas PKCδ only binds to p32 in the presence of PKC activators, PKCζ and PKCα increase their binding when they are in the activated form. Other PKC isoforms such as β, ε, and θ bind equally well to p32 regardless of the presence of PKC activators, and PKCμ binds even better in their absence. It was also found that p32 is not a substrate for any of the PKC isoforms tested, but interestingly, its presence had a stimulatory effect (2-fold for PKCδ) on PKC activity. We also observed in vivo interaction between PKC and p32 by immunofluorescence and confocal microscopy. A time course of phorbol ester treatment of cultured rat hepatocytes (C9 cells) showed that PKCθ and p32 are constitutively associated in vivo, whereas PKCδ activation is required for its association with p32. Our data also showed that phorbol ester treatment induces a transient translocation of p32 from the cytoplasm to the cell nucleus. Together, these findings suggest that p32 may be a regulator of PKC location and function.
Journal of Applied Microbiology | 2010
J.S. Rodríguez-Zavala; M.A. Ortiz-Cruz; Guillermo Mendoza-Hernández; R. Moreno-Sánchez
Aims: To analyse the production of different metabolites by dark‐grown Euglena gracilis under conditions found to render high cell growth.
Plant Physiology | 2007
Robert van Lis; Guillermo Mendoza-Hernández; Georg Groth; Ariane Atteia
In this study, we investigate the structure of the mitochondrial F0F1-ATP synthase of the colorless alga Polytomella sp. with respect to the enzyme of its green close relative Chlamydomonas reinhardtii. It is demonstrated that several unique features of the ATP synthase in C. reinhardtii are also present in Polytomella sp. The α- and β-subunits of the ATP synthase from both algae are highly unusual in that they exhibit extensions at their N- and C-terminal ends, respectively. Several subunits of the Polytomella ATP synthase in the range of 9 to 66 kD have homologs in the green alga but do not have known equivalents as yet in mitochondrial ATP synthases of mammals, plants, or fungi. The largest of these so-called ASA (ATP Synthase-Associated) subunits, ASA1, is shown to be an extrinsic protein. Short heat treatment of isolated Polytomella mitochondria unexpectedly dissociated the otherwise highly stable ATP synthase dimer of 1,600 kD into subcomplexes of 800 and 400 kD, assigned as the ATP synthase monomer and F1-ATPase, respectively. Whereas no ASA subunits were found in the F1-ATPase, all but two were present in the monomer. ASA6 (12 kD) and ASA9 (9 kD), predicted to be membrane bound, were not detected in the monomer and are thus proposed to be involved in the formation or stabilization of the enzyme. A hypothetical configuration of the Chlamydomonad dimeric ATP synthase portraying its unique features is provided to spur further research on this topic.
Journal of Proteomics | 2012
José A. Huerta-Ocampo; Juan Alberto Osuna-Castro; Gisela Jareth Lino-López; Alberto Barrera-Pacheco; Guillermo Mendoza-Hernández; Antonio De León-Rodríguez; Ana P. Barba de la Rosa
Papaya (Carica papaya L.) is a climacteric fruit susceptible to postharvest losses due to the ethylene-induced ripening. The inhibitor of ethylene action, 1-methylcyclopropene (1-MCP), has been used worldwide as a safe postharvest non-toxic agent, but the physiological and biochemical modifications induced by 1-MCP are not well understood. Using the 2-DE analysis, we report the changes in the protein profiles after 6 and 18 days of postharvest and the effect of the effect of 1-MCP treatment on fruits. Twenty seven protein spots showing differences in abundance during ripening were successfully identified by nano-LC-ESI/MS/MS. Some spots corresponded to the cell wall degrading enzymes related to fruit ripening; others were involved in oxidative damage protection, protein folding, and cell growth and survival that were induced by 1-MCP. This is the first proteomic report analyzing the effect of 1-MCP in papaya ripening. The present data will help to shed light on papaya fruit ripening process.
PLOS ONE | 2013
José Díaz-Chávez; Miguel A. Fonseca-Sánchez; Elena Arechaga-Ocampo; Ali Flores-Pérez; Yadira Palacios-Rodríguez; Guadalupe Domínguez-Gómez; Laurence A. Marchat; Lizeth Fuentes-Mera; Guillermo Mendoza-Hernández; Patricio Gariglio; César López-Camarillo
The use of chemopreventive natural compounds represents a promising strategy in the search for novel therapeutic agents in cancer. Resveratrol (3,4′,5-trans-trihydroxystilbilene) is a dietary polyphenol found in fruits, vegetables and medicinal plants that exhibits chemopreventive and antitumor effects. In this study, we searched for modulated proteins with preventive or therapeutic potential in MCF-7 breast cancer cells exposed to resveratrol. Using two-dimensional electrophoresis we found significant changes (FC >2.0; p≤0.05) in the expression of 16 proteins in resveratrol-treated MCF-7 cells. Six down-regulated proteins were identified by tandem mass spectrometry (ESI-MS/MS) as heat shock protein 27 (HSP27), translationally-controlled tumor protein, peroxiredoxin-6, stress-induced-phosphoprotein-1, pyridoxine-5′-phosphate oxidase-1 and hypoxanthine-guanine phosphoribosyl transferase; whereas one up-regulated protein was identified as triosephosphate isomerase. Particularly, HSP27 overexpression has been associated to apoptosis inhibition and resistance of human cancer cells to therapy. Consistently, we demonstrated that resveratrol induces apoptosis in MCF-7 cells. Apoptosis was associated with a significant increase in mitochondrial permeability transition, cytochrome c release in cytoplasm, and caspases -3 and -9 independent cell death. Then, we evaluated the chemosensitization effect of increasing concentrations of resveratrol in combination with doxorubicin anti-neoplastic agent in vitro. We found that resveratrol effectively sensitize MCF-7 cells to cytotoxic therapy. Next, we evaluated the relevance of HSP27 targeted inhibition in therapy effectiveness. Results evidenced that HSP27 inhibition using RNA interference enhances the cytotoxicity of doxorubicin. In conclusion, our data indicate that resveratrol may improve the therapeutic effects of doxorubicin in part by cell death induction. We propose that potential modulation of HSP27 levels using natural alternative agents, as resveratrol, may be an effective adjuvant in breast cancer therapy.
FEBS Journal | 2007
Emma Saavedra; Alvaro Marín-Hernández; Rusely Encalada; Alfonso Olivos; Guillermo Mendoza-Hernández; Rafael Moreno-Sánchez
Glycolysis in the human parasite Entamoeba histolytica is characterized by the absence of cooperative modulation and the prevalence of pyrophosphate‐dependent (over ATP‐dependent) enzymes. To determine the flux‐control distribution of glycolysis and understand its underlying control mechanisms, a kinetic model of the pathway was constructed by using the software gepasi. The model was based on the kinetic parameters determined in the purified recombinant enzymes, and the enzyme activities, and steady‐state fluxes and metabolite concentrations determined in amoebal trophozoites. The model predicted, with a high degree of accuracy, the flux and metabolite concentrations found in trophozoites, but only when the pyrophosphate concentration was held constant; at variable pyrophosphate, the model was not able to completely account for the ATP production/consumption balance, indicating the importance of the pyrophosphate homeostasis for amoebal glycolysis. Control analysis by the model revealed that hexokinase exerted the highest flux control (73%), as a result of its low cellular activity and strong AMP inhibition. 3‐Phosphoglycerate mutase also exhibited significant flux control (65%) whereas the other pathway enzymes showed little or no control. The control of the ATP concentration was also mainly exerted by ATP consuming processes and 3‐phosphoglycerate mutase and hexokinase (in the producing block). The model also indicated that, in order to diminish the amoebal glycolytic flux by 50%, it was required to decrease hexokinase or 3‐phosphoglycerate mutase by 24% and 55%, respectively, or by 18% for both enzymes. By contrast, to attain the same reduction in flux by inhibiting the pyrophosphate‐dependent enzymes pyrophosphate‐phosphofructokinase and pyruvate phosphate dikinase, they should be decreased > 70%. On the basis of metabolic control analysis, steps whose inhibition would have stronger negative effects on the energy metabolism of this parasite were identified, thus becoming alternative targets for drug design.