Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Guillermo Mínguez Espallargas is active.

Publication


Featured researches published by Guillermo Mínguez Espallargas.


Journal of the American Chemical Society | 2014

Nontemplate Synthesis of CH3NH3PbBr3 Perovskite Nanoparticles

Luciana C. Schmidt; Antonio Pertegás; Soranyel Gonzalez-Carrero; Olga Malinkiewicz; Said Agouram; Guillermo Mínguez Espallargas; Henk J. Bolink; Raquel E. Galian; Julia Pérez-Prieto

To date, there is no example in the literature of free, nanometer-sized, organolead halide CH3NH3PbBr3 perovskites. We report here the preparation of 6 nm-sized nanoparticles of this type by a simple and fast method based on the use of an ammonium bromide with a medium-sized chain that keeps the nanoparticles dispersed in a wide range of organic solvents. These nanoparticles can be maintained stable in the solid state as well as in concentrated solutions for more than three months, without requiring a mesoporous material. This makes it possible to prepare homogeneous thin films of these nanoparticles by spin-coating on a quartz substrate. Both the colloidal solution and the thin film emit light within a narrow bandwidth of the visible spectrum and with a high quantum yield (ca. 20%); this could be advantageous in the design of optoelectronic devices.


CrystEngComm | 2008

Combining metals with halogen bonds

Lee Brammer; Guillermo Mínguez Espallargas; Stefano Libri

Halogen bonds in the solid state have been investigated for many years, with a major resurgence in activity occurring in the past decade. The emphasis of most studies has been on organic components. This Highlight focusses on inorganic components, or at least metal-containing components, and explores their propensity to form halogen bonds. The use of C–X⋯X′–M halogen bonds in forming networks is briefly reviewed and their utility in investigating the nature of halogen bonds is explored since their strength can be tuned by changing either the organic (donor) halogen (C–X) or the inorganic (acceptor) halogen (M–X′). A survey has been performed of crystal structures in which interactions are of suitable geometry to be considered as halogen bonds. In particular the role of simple monatomic (e.g.oxo, nitrido) and diatomic (e.g.carbonyl, cyanide) ligands as halogen bond acceptors in transition metal complexes is examined. Main group metals are also considered in a further section that considers D–X⋯A–M halogen bonds, where D = halogen bond donor, A = halogen bond acceptor and M = main group metal or metalloid. Many examples presented herein were not identified as halogen bonds in the original articles. The aim of this survey is to examine the breadth of elements that can be involved in halogen bonding involving at least one inorganic (metal-containing) component and consider this range of interactions as a basis for future research in halogen bonding with applications in crystal engineering and allied areas.


Energy and Environmental Science | 2014

Flexible high efficiency perovskite solar cells

Cristina Roldán-Carmona; Olga Malinkiewicz; Alejandra Soriano; Guillermo Mínguez Espallargas; Ana Garcia; Patrick Reinecke; Thomas Kroyer; M. Ibrahim Dar; Mohammad Khaja Nazeeruddin; Henk J. Bolink

Flexible perovskite based solar cells with power conversion efficiencies of 7% have been prepared on PET based conductive substrates. Extended bending of the devices does not deteriorate their performance demonstrating their suitability for roll to roll processing.


Journal of the American Chemical Society | 2013

Spin-Crossover Modification through Selective CO2 Sorption

Eugenio Coronado; Mónica Giménez-Marqués; Guillermo Mínguez Espallargas; Fernando Rey; Iñigo J. Vitorica-Yrezabal

We present a spin-crossover Fe(II) coordination polymer with no permanent channels that selectively sorbs CO2 over N2. The one-dimensional chains display internal voids of ∼9 Å diameter, each being capable to accept one molecule of CO2 at 1 bar and 273 K. X-ray diffraction provides direct structural evidence of the location of the gas molecules and reveals the formation of O═C═O(δ(-))···π interactions. This physisorption modifies the spin transition, producing a 9 K increase in T1/2.


CrystEngComm | 2003

Involving metals in halogen–halogen interactions: second-sphere Lewis acid ligands for perhalometallate ions (M–X⋯X′–C)

Lee Brammer; Guillermo Mínguez Espallargas; Harry Adams

Lewis-acidic halocarbon groups (X–C) serve as effective second-sphere ligands for perhalometallate ions and provide an alternative means to hydrogen bonds for developing the supramolecular chemistry of such ions, exemplified here by short directional M–X⋯X′–C halogen bond linkages used in conjunction with hydrogen bonds for crystal synthesis.


Chemistry: A European Journal | 2014

A SIM‐MOF: Three‐Dimensional Organisation of Single‐Ion Magnets with Anion‐Exchange Capabilities

José J. Baldoví; Eugenio Coronado; Alejandro Gaita-Ariño; Christoph Gamer; Mónica Giménez-Marqués; Guillermo Mínguez Espallargas

The formation of a metal-organic framework (MOF) with nodes that have single-molecule magnet (SMM) behaviour has been achieved by using mononuclear lanthanoid analogues, also known as single-ion magnets (SIMs), which enormously simplifies the challenging issue of making SMM-MOFs. Here we present a rational design of a family of MOFs, [Ln(bipyNO)4](TfO)3⋅x solvent (Ln=Tb (1); Dy (2); Ho (3); Er (4); TfO=triflate), in which the lanthanoid centres have an square-antiprismatic coordination environment suitable for SIM behaviour. Magnetic measurements confirm the existence of slow magnetic relaxation typical of SMMs, which has been rationalised by means of a radial effective charge model. In addition, we have explored the incorporation of bulky polyoxometalates (POMs) into the cavities of the SIM-MOF by anion exchange, finding that they do not interfere with the slow magnetic relaxation. This demonstrates the robustness of the frameworks and opens the possibility of incorporating non-innocent anions.


Nature Communications | 2012

Tuning the magneto-structural properties of non-porous coordination polymers by HCl chemisorption

Eugenio Coronado; Mónica Giménez-Marqués; Guillermo Mínguez Espallargas; Lee Brammer

Responsive materials for which physical or chemical properties can be tuned by applying an external stimulus are attracting considerable interest in view of their potential applications as chemical switches or molecular sensors. A potential source of such materials is metal-organic frameworks. These porous coordination polymers permit the physisorption of guest molecules that can provoke subtle changes in their porous structure, thus affecting their physical properties. Here we show that the chemisorption of gaseous HCl molecules by a non-porous one-dimensional coordination polymer instigates drastic modifications in the magnetic properties of the material. These changes result from profound structural changes, involving cleavage and formation of covalent bonds, but with no disruption of crystallinity.


Chemical Communications | 2007

Ligand flexibility and framework rearrangement in a new family of porous metal–organic frameworks

Samuel M. Hawxwell; Guillermo Mínguez Espallargas; Darren Bradshaw; Matthew J. Rosseinsky; Timothy J. Prior; Alastair J. Florence; Jacco van de Streek; Lee Brammer

Ligand flexibility permits framework rearrangement upon evacuation and gas uptake in a new family of porous MOFs.


Journal of Materials Chemistry | 2015

Blue-luminescent organic lead bromide perovskites: highly dispersible and photostable materials

Soranyel Gonzalez-Carrero; Guillermo Mínguez Espallargas; Raquel E. Galian; Julia Pérez-Prieto

The preparation of a blue-luminescent and photostable organic–inorganic hybrid perovskite with an X-ray powder diffraction spectrum consistent with a two-dimensional inorganic framework is reported. This perovskite can be produced with a high reaction yield and valuable optical properties, such as luminescence quantum yield over 20%, radiative rate constant of up to 80 × 106 s−1, and high photostability under UV light. This material remains stable as a solid, is toluene-dispersible, and can be reverted reversibly into its precursors by using dimethylformamide (DMF). Moreover, the DMF dispersion can be injected into toluene to produce a nanomaterial or be used to prepare films by spin-coating on a substrate; both, the nanomaterial and the film exhibit practically the same optical features as the initial perovskite.


Inorganic Chemistry | 2013

A Family of Layered Chiral Porous Magnets Exhibiting Tunable Ordering Temperatures

Matteo Atzori; Samia Benmansour; Guillermo Mínguez Espallargas; Miguel Clemente-León; Alexandre Abhervé; Patricia Gómez-Claramunt; Eugenio Coronado; Flavia Artizzu; Elisa Sessini; Paola Deplano; Angela Serpe; Maria Laura Mercuri; Carlos J. Gómez García

A simple change of the substituents in the bridging ligand allows tuning of the ordering temperatures, Tc, in the new family of layered chiral magnets A[M(II)M(III)(X2An)3]·G (A = [(H3O)(phz)3](+) (phz = phenazine) or NBu4(+); X2An(2-) = C6O4X2(2-) = 2,5-dihydroxy-1,4-benzoquinone derivative dianion, with M(III) = Cr, Fe; M(II) = Mn, Fe, Co, etc.; X = Cl, Br, I, H; G = water or acetone). Depending on the nature of X, an increase in Tc from ca. 5.5 to 6.3, 8.2, and 11.0 K (for X = Cl, Br, I, and H, respectively) is observed in the MnCr derivative. Furthermore, the presence of the chiral cation [(H3O)(phz)3](+), formed by the association of a hydronium ion with three phenazine molecules, leads to a chiral structure where the Δ-[(H3O)(phz)3](+) cations are always located below the Δ-[Cr(Cl2An)3](3-) centers, leading to a very unusual localization of both kinds of metals (Cr and Mn) and to an eclipsed disposition of the layers. This eclipsed disposition generates hexagonal channels with a void volume of ca. 20% where guest molecules (acetone and water) can be reversibly absorbed. Here we present the structural and magnetic characterization of this new family of anilato-based molecular magnets.

Collaboration


Dive into the Guillermo Mínguez Espallargas's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lee Brammer

University of Sheffield

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Harry Adams

University of Sheffield

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge