Guillermo Paz-y-Miño-C
University of Massachusetts Dartmouth
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Guillermo Paz-y-Miño-C.
Evolution: Education and Outreach | 2012
Guillermo Paz-y-Miño-C; Avelina Espinosa
Acceptance of evolution by educators of prospective teachers remains superficially studied despite their role in having mentored schoolteachers whose weak support of evolution is known. Here, we contrast the views of New England educators of prospective teachers (nu2009=u200962; 87% Ph.D./doctorate holders in 32 specializations) with those of the general faculty (nu2009=u2009244; 93% Ph.D./doctorate holders in 40 disciplines), both members of 35 colleges and universities, and with college students (nu2009=u2009827; subsample of the 35 institutions) who were polled on: (1) the controversy evolution vs. creationism vs. intelligent design (ID), (2) their understanding of how science/evolution works, and (3) their religiosity. The educators held intermediate positions in respect to the general faculty and the students: 94% of the general faculty, 75% of the educators, and 63% of the students said they accepted evolution openly; and 82% of the general faculty, 71% of the educators, and 58% of the students thought that evolution is definitely true. Only 3% of the general faculty in comparison to 19% of the educators and 24% of the students thought that evolution and creationism are in harmony. Although 93% of the general faculty, educators, and students knew that evolution relies on common ancestry, 26% of the general faculty, 45% of the educators, and 35% of the students did not know that humans are apes. Remarkably, 15% of the general faculty, 32% of the educators, and 35% of the students believed, incorrectly, that the origin of the human mind cannot be explained by evolution; and 30% of the general faculty, 59% of the educators, and 75% of the students were Lamarckian (=believed in inheritance of acquired traits). For science education: 96% of the general faculty, 86% of the educators, and 71% of the students supported the exclusive teaching of evolution, while 4% of the general faculty, 14% of the educators, and 29% of the students favored equal time to evolution, creationism and ID; note that 92% of the general faculty, 82% of the educators, and 50% of the students perceived ID as either not scientific and proposed to counter evolution based on false claims or as religious doctrine consistent with creationism. The general faculty was the most knowledgeable about science/evolution and the least religious (science index, SIu2009=u20092.49; evolution index, EIu2009=u20092.49; and religiosity index, RIu2009=u20090.49); the educators reached lower science/evolution but higher religiosity indexes than the general faculty (SIu2009=u20091.96, EIu2009=u20091.96, and RIu2009=u20090.83); and the students were the least knowledgeable about science/evolution and the most religious (SIu2009=u20091.80, EIu2009=u20091.60, and RIu2009=u20090.89). Understanding of science and evolution were inversely correlated with level of religiosity, and understanding of evolution increased with increasing science literacy. Interestingly, ≈36% of the general faculty, educators and students considered religion to be very important in their lives, and 17% of the general faculty, 34% of the educators, and 28% of the students said they prayed daily. Assessing the perception of evolution by educators of prospective teachers vs. the general faculty and the students of New England, one of the historically most progressive regions in the U.S., is crucial for determining the magnitude of the impact of creationism and ID on attitudes toward science, reason, and education in science.
Journal of Eukaryotic Microbiology | 2012
Avelina Espinosa; Guillermo Paz-y-Miño-C
Persistent difficulties in resolving clear lineages in diverging populations of prokaryotes or unicellular eukaryotes (protistan polyphyletic groups) are challenging the classical species concept. Although multiple integrated approaches would render holistic taxonomies, most phylogenetic studies are still based on single‐gene or morphological traits. Such methodologies conceal natural lineages, which are considered “cryptic.” The concept of species is considered artificial and inadequate to define natural populations. Social organisms display differential behaviors toward kin than to nonrelated individuals. In “social” microbes, kin discrimination has been used to help resolve crypticity. Aggregative behavior could be explored in a nonsocial protist to define phylogenetic varieties that are considered “cryptic.” Two Entamoeba invadens strains, IP‐1 and VK‐1:NS are considered close populations of the same “species.” This study demonstrates that IP‐1 and VK‐1:NS trophozoites aggregate only with alike members and discriminate members of different strains based on behavioral and chemical signals. Combined morphological, behavioral/chemical, and ecological studies could improve Archamoebae phylogenies and define cryptic varieties. Evolutionary processes in which selection acted continuously and cumulatively on ancestors of Entamoeba populations gave rise to chemical and behavioral signals that allowed individuals to discriminate nonpopulation members and, gradually, to the emergence of new lineages; alternative views that claim a “Designer” or “Creator” as responsible for protistan diversity are unfounded.
Evolutionary Ecology | 2014
Avelina Espinosa; Guillermo Paz-y-Miño-C
Unicellular eukaryotes, or protists, are among the most ancient organisms on Earth. Protists belong to multiple taxonomic groups; they are widely distributed geographically and in all environments. Their ability to discriminate among con- and heterospecifics has been documented during the past decade. Here we discuss exemplar cases of taxa-, clone-, and possible kin-discrimination in five major lineages: Mycetozoa (Dictyostelium, Polysphondylium), Dikarya (Saccharomyces), Ciliophora (Tetrahymena), Apicomplexa (Plasmodium) and Archamoebae (Entamoeba). We summarize the proposed genetic mechanisms involved in discrimination-mediated aggregation (self vs. different), including the csA, FLO and trg (formerly lag) genes, and the Proliferation Activation Factors, which facilitate clustering in some protistan taxa. We caution about the experimental challenges intrinsic to studying recognition in protists, and highlight the opportunities for exploring the ecology and evolution of complex forms of cell–cell communication, including social behavior, in a polyphyletic, still superficially understood group of organisms. Because unicellular eukaryotes are the evolutionary precursors of multicellular life, we infer that their mechanisms of taxa-, clone-, and possible kin-discrimination gave origin to the complex diversification and sophistication of traits associated with species and kin recognition in plants, fungi, invertebrates and vertebrates.
Journal of Eukaryotic Microbiology | 2012
Guillermo Paz-y-Miño-C; Avelina Espinosa
The controversy evolution vs. creationism is inherent to the incompatibility between scientific rationalism/empiricism and the belief in supernatural causation. To test this hypothesis, we conceptualized a Cartesian landscape where the dependent variable acceptance of evolution was plotted as function of three factors, each represented by an index (value range 0 to 3): Religiosity Index (RI), Science Index (SI), and Evolution Index (EI). The indexes summarized an individuals personal religious convictions, familiarity with the processes and forces of change in organisms (= concept of evolution), and understanding the essence of science (= method to explore reality). We compared and contrasted acceptance of evolution among four populations of variable educational attainment: 244 professors of New England, United States (93% Ph.D./doctorate holders), 50 protistologists from 25 countries (70% Ph.D./doctorate holders), 62 educators of prospective teachers (83% Ph.D./doctorate holders), and 827 college students. The New England faculty held the highest acceptance of evolution position (RI = 0.49; SI = 2.49; EI = 2.49), followed by the protistologists (RI = 0.46; SI = 2.30; EI = 2.48), the educators of prospective teachers (RI = 0.83; SI = 1.96; EI = 1.96), and the students (RI = 0.89; SI = 1.80; EI = 1.60); therefore, the data supported our hypothesis. Proper science education, public outreach and robust debate over the controversy “evolution versus creationism” should suffice to improve societys evolution literacy, and qualified scholars ought to lead this mission.
Journal of Eukaryotic Microbiology | 2016
Avelina Espinosa; Guillermo Paz-y-Miño-C; Meagan Hackey; Scott Rutherford
Studies on clone‐ and kin‐discrimination in protists have proliferated during the past decade. We report clone‐recognition experiments in seven Entamoeba lineages (E. invadens IP‐1, E. invadens VK‐1:NS, E. terrapinae, E. moshkovskii Laredo, E. moshkovskii Snake, E. histolytica HM‐1:IMSS and E. dispar). First, we characterized morphometrically each clone (length, width, and cell‐surface area) and documented how they differed statistically from one another (as per single‐variable or canonical‐discriminant analyses). Second, we demonstrated that amebas themselves could discriminate self (clone) from different (themselves vs. other clones). In mix‐cell‐line cultures between closely‐related (E. invadens IP‐1 vs. E. invadens VK‐1:NS) or distant‐phylogenetic clones (E. terrapinae vs. E. moshkovskii Laredo), amebas consistently aggregated with same‐clone members. Third, we identified six putative cell‐signals secreted by the amebas (RasGap/Ankyrin, coronin‐WD40, actin, protein kinases, heat shock 70, and ubiquitin) and which known functions in Entamoeba spp. included: cell proliferation, cell adhesion, cell movement, and stress‐induced encystation. To our knowledge, this is the first multi‐clone characterization of Entamoeba spp. morphometrics, aggregative behavior, and cell‐signaling secretion in the context of clone‐recognition. Protists allow us to study cell–cell recognition from ecological and evolutionary perspectives. Modern protistan lineages can be central to studies about the origins and evolution of multicellularity.
Evolution: Education and Outreach | 2013
Guillermo Paz-y-Miño-C; Avelina Espinosa
There is no place on Earth like the Galapagos Islands and no better destination to discuss the reality of evolution. Under the theme ?Why Does Evolution Matter?, the University San Francisco of Quito (USFQ), Ecuador, and its Galapagos Institute for the Arts and Sciences (GAIAS), organized the III World Evolution Summit in San Crist?bal Island. The 200-attendee meeting took place on 1 to 5 June 2013; it included 12 keynote speakers, 20 oral presentations by international scholars, and 31 posters by faculty, postdocs, and graduate and undergraduate students. The Summit encompassed five sessions: evolution and society, pre-cellular evolution and the RNA world, behavior and environment, genome, and microbes and diseases. USFQ and GAIAS launched officially the Lynn Margulis Center for Evolutionary Biology and showcased the Galapagos Science Center, in San Crist?bal, an impressive research facility conceptualized in partnership with the University of North Carolina at Chapel Hill, USA. USFQ and GAIAS excelled at managing the conference with exceptional vision and at highlighting the relevance of Galapagos in the history of modern evolutionary thinking; Charles Darwin?s visit to this volcanic archipelago in 1835 unfolded unprecedented scientific interest in what today is a matchless World Heritage.
Journal of Eukaryotic Microbiology | 2016
Guillermo Paz-y-Miño-C; Avelina Espinosa
During four decades (1960–1990s), the conceptualization and experimental design of studies in kin recognition relied on work with multicellular eukaryotes, particularly Unikonta (including invertebrates and vertebrates) and some Bikonta (including plants). This pioneering research had an animal behavior approach. During the 2000s, work on taxa‐, clone‐ and kin‐discrimination and recognition in protists produced genetic and molecular evidence that unicellular organisms (e.g. Saccharomyces, Dictyostelium, Polysphondylium, Tetrahymena, Entamoeba and Plasmodium) could distinguish between same (self or clone) and different (diverse clones), as well as among conspecifics of close or distant genetic relatedness. Here, we discuss some of the research on the genetics of kin discrimination/recognition and highlight the scientific progress made by switching emphasis from investigating multicellular to unicellular systems (and backwards). We document how studies with protists are helping us to understand the microscopic, cellular origins and evolution of the mechanisms of kin discrimination/recognition and their significance for the advent of multicellularity. We emphasize that because protists are among the most ancient organisms on Earth, belong to multiple taxonomic groups and occupy all environments, they can be central to reexamining traditional hypotheses in the field of kin recognition, reformulating concepts, and generating new knowledge.
Journal of Eukaryotic Microbiology | 2018
Avelina Espinosa; Guillermo Paz-y-Miño-C
Entamoeba histolytica is one of the least understood protists in terms of taxa, clone, and kin discrimination/recognition ability. However, the capacity to tell apart same or self (clone/kin) from different or nonself (nonclone/nonkin) has long been demonstrated in pathogenic eukaryotes like Trypanosoma and Plasmodium, free‐living social amebas (Dictyostelium, Polysphondylium), budding yeast (Saccharomyces), and in numerous bacteria and archaea (prokaryotes). Kin discrimination/recognition is explained under inclusive fitness theory; that is, the reproductive advantage that genetically closely related organisms (kin) can gain by cooperating preferably with one another (rather than with distantly related or unrelated individuals), minimizing antagonism and competition with kin, and excluding genetic strangers (or cheaters = noncooperators that benefit from others’ investments in altruistic cooperation). In this review, we rely on the outcomes of in vitro pairwise discrimination/recognition encounters between seven Entamoeba lineages to discuss the biological significance of taxa, clone, and kin discrimination/recognition in a range of generalist and specialist species (close or distantly related phylogenetically). We then focus our discussion on the importance of these laboratory observations for E. histolyticas life cycle, host infestation, and implications of these features of the amebas’ natural history for human health (including mitigation of amebiasis).
The international journal of science in society | 2015
Guillermo Paz-y-Miño-C; Avelina Espinosa
New England Science Public: Series Evolution | 2013
Guillermo Paz-y-Miño-C; Avelina Espinosa