Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Guillermo Quijano is active.

Publication


Featured researches published by Guillermo Quijano.


Applied Microbiology and Biotechnology | 2009

Two-phase partitioning bioreactors in environmental biotechnology

Guillermo Quijano; María Hernández; Frederic Thalasso; Raúl Muñoz; Santiago Villaverde

Two-phase partitioning bioreactors (TPPBs) in environmental biotechnology are based on the addition of a non-aqueous phase (NAP) into a biological process in order to overcome both mass-transfer limitations from the gas to aqueous phase and pollutant-mediated inhibitions. Despite constituting a robust and reliable technology in terms of pollutant biodegradation rates and process stability in wastewater, soil, and gas treatment applications, this superior performance only applies for a restricted number of pollutants or contamination events. Severe limitations such as high energy requirements, high costs of some NAPs, foaming, or pollutant sequestration challenge the full-scale application of this technology. The introduction of solid NAPs into this research field has opened a promising pathway for the future development of TPPBs. Finally, this work reviews fundamental aspects of NAP selection and mass transfer and identifies the niches for future research: low energy-demand bioreactor designs, experimental determination of partial mass transfers, and solid NAP tailoring.


Biotechnology Advances | 2012

Recent advances in two-phase partitioning bioreactors for the treatment of volatile organic compounds.

Raúl Muñoz; Andrew J. Daugulis; María Hernández; Guillermo Quijano

Biological processes are considered to be the most cost-effective technology for the off-gas treatment of volatile organic compounds (VOC) at low concentrations. Two-phase partitioning bioreactors (TPPBs) emerged in the early 1990s as innovative multiphase systems capable of overcoming some of the key limitations of traditional biological technologies such as the low mass transfer rates of hydrophobic VOCs and microbial inhibition at high VOC loading rates. Intensive research carried out in the last 5 years has helped to provide a better understanding of the mass transfer phenomena and VOC uptake mechanisms in TPPBs, which has significantly improved the VOC biodegradation processes utilizing this technology platform. This work presents an updated state-of-the-art review on the advances of TPPB technology for air pollution control. The most recent insights regarding non-aqueous phase (NAP) selection, microbiology, reactor design, mathematical modeling and case studies are critically reviewed and discussed. Finally, the key research issues required to move towards the development of efficient and stable full-scale VOC biodegradation processes in TPPBs are identified.


Biotechnology and Bioengineering | 2010

A Comparative Study of Solid and Liquid Non-Aqueous Phases for the Biodegradation of Hexane in Two-Phase Partitioning Bioreactors

María Hernández; Guillermo Quijano; Frederic Thalasso; Andrew J. Daugulis; Santiago Villaverde; Raúl Muñoz

A comparative study of the performance of solid and liquid non‐aqueous phases (NAPs) to enhance the mass transfer and biodegradation of hexane by Pseudomonas aeruginosa in two‐phase partitioning bioreactors (TPPBs) was undertaken. A preliminary NAP screening was thus carried out among the most common solid and liquid NAPs used in pollutant biodegradation. The polymer Kraton G1657 (solid) and the liquid silicone oils SO20 and SO200 were selected from this screening based on their biocompatibility, resistance to microbial attack, non‐volatility and high affinity for hexane (low partition coefficient: K = Cg/CNAP, where Cg and CNAP represent the pollutant concentration in the gas phase and NAP, respectively). Despite the three NAPs exhibited a similar affinity for hexane (K ≈ 0.0058), SO200 and SO20 showed a superior performance to Kraton G1657 in terms of hexane mass transfer and biodegradation enhancement. The enhanced performance of SO200 and SO20 could be explained by both the low interfacial area of this solid polymer (as a result of the large size of commercial beads) and by the interference of water on hexane transfer (observed in this work). When Kraton G1657 (20%) was tested in a TPPB inoculated with P. aeruginosa, steady state elimination capacities (ECs) of 5.6 ± 0.6 g m−3 h−1 were achieved. These values were similar to those obtained in the absence of a NAP but lower compared to the ECs recorded in the presence of 20% of SO200 (10.6 ± 0.9 g m−3 h−1). Finally, this study showed that the enhancement in the transfer of hexane supported by SO200 was attenuated by limitations in microbial activity, as shown by the fact that the ECs in biotic systems were far lower than the maximum hexane transfer capacity recorded under abiotic conditions. Biotechnol. Bioeng. 2010;106: 731–740.


Journal of Hazardous Materials | 2010

Determining the effect of solid and liquid vectors on the gaseous interfacial area and oxygen transfer rates in two-phase partitioning bioreactors

Guillermo Quijano; José Rocha-Rios; María Hernández; Santiago Villaverde; Sergio Revah; Raúl Muñoz; Frederic Thalasso

The effect of liquid and solid transfer vectors (silicone oil and Desmopan, respectively) on the gaseous interfacial area (a(g)) was evaluated in a two-phase partitioning bioreactor (TPPB) using fresh mineral salt medium and the cultivation broth of a toluene degradation culture (Pseudomonas putida DOT-T1E cultures continuously cultivated with and without silicone oil at low toluene loading rates). Higher values of a(g) were recorded in the presence of both silicone oil and Desmopan compared to the values obtained in the absence of a vector, regardless of the aqueous medium tested (1.6 and 3 times higher, respectively, using fresh mineral salt medium). These improvements in a(g) were well correlated to the oxygen mass transfer enhancements supported by the vectors (1.3 and 2.5 for liquid and solid vectors, respectively, using fresh medium). In this context, oxygen transfer rates of 2.5 g O(2)L(-1)h(-1) and 1.3 g O(2)L(-1)h(-1) were recorded in the presence of Desmopan and silicone oil, respectively, which are in agreement with previously reported values in literature. These results suggest that mass transfer enhancements in TPPBs might correspond to an increase in a(g) rather than to the establishment of a high-performance gas/vector/water transfer pathway.


Environmental Science & Technology | 2012

Key role of microbial characteristics on the performance of VOC biodegradation in two-liquid phase bioreactors.

María Hernández; Guillermo Quijano; Raúl Muñoz

Despite being studied for over 20 years, little is known about the mechanisms underlying the treatment of volatile organic compounds (VOCs) from industrial off-gases in two-liquid phase bioreactors (TLPBs). Recent reports have highlighted a significant mismatch between the high abiotic mass transfer capacity of TLPBs and the low VOC biodegradation rates sometimes recorded, which suggests that a process limitation might also be found in the microbiology of the process. Therefore, this study was conducted to assess the key role of microbial characteristics on the performance of VOC biodegradation in a TLPB using three different hexane degrading consortia. When silicone oil 200 cSt (SO200) was added to the systems, the steady state hexane elimination capacities (ECs) increased by a factor of 8.7 and 16.3 for Consortium A (hydrophilic microorganisms) and B (100% hydrophobic microorganisms), respectively. In the presence of SO200, Consortium C supported a first steady state with a 2-fold increase in ECs followed by a 16-fold EC increase after a hydrophobicity shift (to 100% hydrophobic microorganisms), compared to the system deprived of SO200. This work revealed that cell hydrophobicity can play a key role in the successful performance of TLPBs, and to the best of our knowledge, this is the first report on hydrophobic VOC treatment with exclusive VOC uptake within a nonbioavailable non aqueous phase. Finally, an independent set of experiments showed that metabolite accumulation can also severely inhibit TLPB performance despite the presence of SO200.


Chemosphere | 2016

Exploring the potential of fungi for methane abatement: Performance evaluation of a fungal-bacterial biofilter.

Raquel Lebrero; Juan C. López; Iiro Lehtinen; Rebeca Pérez; Guillermo Quijano; Raúl Muñoz

Despite several fungal strains have been retrieved from methane-containing environments, the actual capacity and role of fungi on methane abatement is still unclear. The batch biodegradation tests here performed demonstrated the capacity of Graphium sp. to co-metabolically biodegrade methane and methanol. Moreover, the performance and microbiology of a fungal-bacterial compost biofilter treating methane at concentrations of ∼2% was evaluated at empty bed residence times of 40 and 20 min under different irrigation rates. The daily addition of 200 mL of mineral medium resulted in elimination capacities of 36.6 ± 0.7 g m(-3) h(-1) and removal efficiencies of ≈90% at the lowest residence time. The indigenous fungal community of the compost was predominant in the final microbial population and outcompeted the inoculated Graphium sp. during biofilter operation.


Water Research | 2013

Step-feed biofiltration: A low cost alternative configuration for off-gas treatment

José M. Estrada; Guillermo Quijano; Raquel Lebrero; Raúl Muñoz

Clogging due to biomass accumulation and the loss of structural stability of the packing media are common operational drawbacks of standard gas biofiltration inherent to the traditional biofilter design, which result in prohibitive pressure drop buildups and media channeling. In this work, an innovative step-feed biofilter configuration, with the air emission supplied in either two or three locations along the biofilter height, was tested and compared with a standard biofilter using toluene as a model pollutant and two packing materials: compost and perlite. When using compost, the step-feed biofilter supported similar elimination capacities (EC ≈ 80 g m(-3) h(-1)) and CO2 production rates (200 g m(-3) h(-1)) to those achieved in the standard biofilter. However, while the pressure drop in the step-feed system remained below 300 Pa m bed(-1) for 61 days, the standard biofilter reached this value in only 14 days and 4000 Pa m bed(-1) by day 30, consuming 75% more compression energy throughout the entire operational period. Operation with perlite supported lower ECs compared to compost in both the step-feed and standard biofilters (≈ 30 g m(-3) h(-1)), probably due to the high indigenous microbial diversity present in this organic packing material. The step-feed biofilter exhibited 65% lower compression energy requirements than the standard biofilter during operation with perlite, while supporting similar ECs. In brief, step-feed biofiltration constitutes a promising operational strategy capable of drastically reducing the operating costs of biofiltration due to a reduced energy consumption and an increased packing material lifespan.


Biotechnology Advances | 2017

Microalgal-bacterial aggregates: Applications and perspectives for wastewater treatment

Guillermo Quijano; Juan S. Arcila; Germán Buitrón

Research on wastewater treatment by means of microalgal-bacterial processes has become a hot topic worldwide during the last two decades. Owing to the lower energy demand for oxygenation, the enhanced nutrient removal and the potential for resource recovery, microalgal-based technologies are nowadays considered as a good alternative to conventional activated sludge treatments in many instances. Nevertheless, biomass harvesting still constitutes one of the major challenges of microalgal-bacterial systems for wastewater treatment, which is hindered by the poor settleability of microalgal biomass. In this review, the use of microalgal-bacterial aggregates (MABAs) to overcome harvesting issues and to enhance resource recovery is presented. The fundamentals of MABAs-based technologies, the operational strategies and factors affecting the formation of MABAs, the microbiology and the methanogenic potential of the aggregates are addressed and critically discussed. The most recent findings and the challenges facing this technology towards its consolidation are also presented.


Journal of Hazardous Materials | 2013

Biological anoxic treatment of O2-free VOC emissions from the petrochemical industry: A proof of concept study

Raúl Muñoz; Theo S.O. Souza; Lina Glittmann; Rebeca Pérez; Guillermo Quijano

An innovative biofiltration technology based on anoxic biodegradation was proposed in this work for the treatment of inert VOC-laden emissions from the petrochemical industry. Anoxic biofiltration does not require conventional O2 supply to mineralize VOCs, which increases process safety and allows for the reuse of the residual gas for inertization purposes in plant. The potential of this technology was evaluated in a biotrickling filter using toluene as a model VOC at loads of 3, 5, 12 and 34 g m(-3)h(-1) (corresponding to empty bed residence times of 16, 8, 4 and 1.3 min) with a maximum elimination capacity of ∼3 g m(-3)h(-1). However, significant differences in the nature and number of metabolites accumulated at each toluene load tested were observed, o- and p-cresol being detected only at 34 g m(-3)h(-1), while benzyl alcohol, benzaldehyde and phenol were detected at lower loads. A complete toluene removal was maintained after increasing the inlet toluene concentration from 0.5 to 1 g m(-3) (which entailed a loading rate increase from 3 to 6 g m(-3)h(-1)), indicating that the system was limited by mass transfer rather than by biological activity. A high bacterial diversity was observed, the predominant phyla being Actinobacteria and Proteobacteria.


Journal of Hazardous Materials | 2014

Hexane abatement and spore emission control in a fungal biofilter-photoreactor hybrid unit

J.O. Saucedo-Lucero; Guillermo Quijano; Sonia Arriaga; Raúl Muñoz

The performance of a fungal perlite-based biofilter coupled to a post-treatment photoreactor was evaluated over 234 days in terms of n-hexane removal, emission and deactivation of fungal spores. The biofilter and photoreactor were operated at gas residence times of 1.20 and 0.14min, respectively, and a hexane loading rate of 115±5gm(-3)h(-1). Steady n-hexane elimination capacities of 30-40gm(-3)h(-1) were achieved, concomitantly with pollutant mineralization efficiencies of 60-90%. No significant influence of biofilter irrigation frequency or irrigation nitrogen concentration on hexane abatement was recorded. Photolysis did not support an efficient hexane post-treatment likely due to the short EBRT applied in the photoreactor, while overall hexane removal and mineralization enhancements of 25% were recorded when the irradiated photoreactor was packed with ZnO-impregnated perlite. However, a rapid catalyst deactivation was observed, which required a periodic reactivation every 48h. Biofilter irrigation every 3 days supported fungal spore emissions at concentrations ranging from 2.4×10(3) to 9.0×10(4)CFUm(-3). Finally, spore deactivation efficiencies of ≈98% were recorded for the photolytic and photocatalytic post-treatment processes. This study confirmed the potential of photo-assisted post-treatment processes to mitigate the emission of hazardous fungal spores and boost the abatement performance of biotechnologies.

Collaboration


Dive into the Guillermo Quijano's collaboration.

Top Co-Authors

Avatar

Raúl Muñoz

University of Valladolid

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Raquel Lebrero

University of Valladolid

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ivonne Figueroa-González

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar

Rebeca Pérez

University of Valladolid

View shared research outputs
Top Co-Authors

Avatar

Juan C. López

University of Valladolid

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge