Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Guini Hong is active.

Publication


Featured researches published by Guini Hong.


Journal of the Royal Society Interface | 2013

Separate enrichment analysis of pathways for up- and downregulated genes

Guini Hong; Wenjing Zhang; Hongdong Li; Xiaopei Shen; Zheng Guo

Two strategies are often adopted for enrichment analysis of pathways: the analysis of all differentially expressed (DE) genes together or the analysis of up- and downregulated genes separately. However, few studies have examined the rationales of these enrichment analysis strategies. Using both microarray and RNA-seq data, we show that gene pairs with functional links in pathways tended to have positively correlated expression levels, which could result in an imbalance between the up- and downregulated genes in particular pathways. We then show that the imbalance could greatly reduce the statistical power for finding disease-associated pathways through the analysis of all-DE genes. Further, using gene expression profiles from five types of tumours, we illustrate that the separate analysis of up- and downregulated genes could identify more pathways that are really pertinent to phenotypic difference. In conclusion, analysing up- and downregulated genes separately is more powerful than analysing all of the DE genes together.


Gene | 2013

Extracting a few functionally reproducible biomarkers to build robust subnetwork-based classifiers for the diagnosis of cancer

Lin Zhang; Shan Li; Chunxiang Hao; Guini Hong; Jinfeng Zou; Yuannv Zhang; Pengfei Li; Zheng Guo

In microarray-based case-control studies of a disease, people often attempt to identify a few diagnostic or prognostic markers amongst the most significant differentially expressed (DE) genes. However, the reproducibility of DE genes identified in different studies for a disease is typically very low. To tackle the problem, we could evaluate the reproducibility of DE genes across studies and define robust markers for disease diagnosis using disease-associated protein-protein interaction (PPI) subnetwork. Using datasets for four cancer types, we found that the most significant DE genes in cancer exhibit consistent up- or down-regulation in different datasets. For each cancer type, the 5 (or 10) most significant DE genes separately extracted from different datasets tend to be significantly coexpressed and closely connected in the PPI subnetwork, thereby indicating that they are highly reproducible at the PPI level. Consequently, we were able to build robust subnetwork-based classifiers for cancer diagnosis.


Oncotarget | 2016

Differential expression analysis for individual cancer samples based on robust within-sample relative gene expression orderings across multiple profiling platforms

Qingzhou Guan; Rou Chen; Haidan Yan; Hao Cai; You Guo; Mengyao Li; Xiangyu Li; Mengsha Tong; Lu Ao; Hongdong Li; Guini Hong; Zheng Guo

The highly stable within-sample relative expression orderings (REOs) of gene pairs in a particular type of human normal tissue are widely reversed in the cancer condition. Based on this finding, we have recently proposed an algorithm named RankComp to detect differentially expressed genes (DEGs) for individual disease samples measured by a particular platform. In this paper, with 461 normal lung tissue samples separately measured by four commonly used platforms, we demonstrated that tens of millions of gene pairs with significantly stable REOs in normal lung tissue can be consistently detected in samples measured by different platforms. However, about 20% of stable REOs commonly detected by two different platforms (e.g., Affymetrix and Illumina platforms) showed inconsistent REO patterns due to the differences in probe design principles. Based on the significantly stable REOs (FDR<0.01) for normal lung tissue consistently detected by the four platforms, which tended to have large rank differences, RankComp detected averagely 1184, 1335 and 1116 DEGs per sample with averagely 96.51%, 95.95% and 94.78% precisions in three evaluation datasets with 25, 57 and 58 paired lung cancer and normal samples, respectively. Individualized pathway analysis revealed some common and subtype-specific functional mechanisms of lung cancer. Similar results were observed for colorectal cancer. In conclusion, based on the cross-platform significantly stable REOs for a particular normal tissue, differentially expressed genes and pathways in any disease sample measured by any of the platforms can be readily and accurately detected, which could be further exploited for dissecting the heterogeneity of cancer.


Oncotarget | 2016

Common DNA methylation alterations of Alzheimer’s disease and aging in peripheral whole blood

Hongdong Li; Zheng Guo; You Guo; Mengyao Li; Haidan Yan; Jun Cheng; Chenguang Wang; Guini Hong

Alzheimers disease (AD) is a common aging-related neurodegenerative illness. Recently, many studies have tried to identify AD- or aging-related DNA methylation (DNAm) biomarkers from peripheral whole blood (PWB). However, the origin of PWB biomarkers is still controversial. In this study, by analyzing 2565 DNAm profiles for PWB and brain tissue, we showed that aging-related DNAm CpGs (Age-CpGs) and AD-related DNAm CpGs (AD-CpGs) observable in PWB both mainly reflected DNAm alterations intrinsic in leukocyte subtypes rather than methylation differences introduced by the increased ratio of myeloid to lymphoid cells during aging or AD progression. The PWB Age-CpGs and AD-CpGs significantly overlapped 107 sites (P-value = 2.61×10−12) and 97 had significantly concordant methylation alterations in AD and aging (P-value < 2.2×10−16), which were significantly enriched in nervous system development, neuron differentiation and neurogenesis. More than 60.8% of these 97 concordant sites were found to be significantly correlated with age in normal peripheral CD4+ T cells and CD14+ monocytes as well as in four brain regions, and 44 sites were also significantly differentially methylated in different regions of AD brain tissue. Taken together, the PWB DNAm alterations related to both aging and AD could be exploited for identification of AD biomarkers.


PLOS ONE | 2011

Reproducible Cancer Biomarker Discovery in SELDI-TOF MS Using Different Pre-Processing Algorithms

Jinfeng Zou; Guini Hong; Xinwu Guo; Lin Zhang; Chen Yao; Jing Wang; Zheng Guo

Background There has been much interest in differentiating diseased and normal samples using biomarkers derived from mass spectrometry (MS) studies. However, biomarker identification for specific diseases has been hindered by irreproducibility. Specifically, a peak profile extracted from a dataset for biomarker identification depends on a data pre-processing algorithm. Until now, no widely accepted agreement has been reached. Results In this paper, we investigated the consistency of biomarker identification using differentially expressed (DE) peaks from peak profiles produced by three widely used average spectrum-dependent pre-processing algorithms based on SELDI-TOF MS data for prostate and breast cancers. Our results revealed two important factors that affect the consistency of DE peak identification using different algorithms. One factor is that some DE peaks selected from one peak profile were not detected as peaks in other profiles, and the second factor is that the statistical power of identifying DE peaks in large peak profiles with many peaks may be low due to the large scale of the tests and small number of samples. Furthermore, we demonstrated that the DE peak detection power in large profiles could be improved by the stratified false discovery rate (FDR) control approach and that the reproducibility of DE peak detection could thereby be increased. Conclusions Comparing and evaluating pre-processing algorithms in terms of reproducibility can elucidate the relationship among different algorithms and also help in selecting a pre-processing algorithm. The DE peaks selected from small peak profiles with few peaks for a dataset tend to be reproducibly detected in large peak profiles, which suggests that a suitable pre-processing algorithm should be able to produce peaks sufficient for identifying useful and reproducible biomarkers.


Oncotarget | 2017

Robust transcriptional tumor signatures applicable to both formalin-fixed paraffin-embedded and fresh-frozen samples

Rou Chen; Qingzhou Guan; Jun Cheng; Jun He; Huaping Liu; Hao Cai; Guini Hong; Jiahui Zhang; Na Li; Lu Ao; Zheng Guo

Formalin-fixed paraffin-embedded (FFPE) samples represent a valuable resource for clinical researches. However, FFPE samples are usually considered an unreliable source for gene expression analysis due to the partial RNA degradation. In this study, through comparing gene expression profiles between FFPE samples and paired fresh-frozen (FF) samples for three cancer types, we firstly showed that expression measurements of thousands of genes had at least two-fold change in FFPE samples compared with paired FF samples. Therefore, for a transcriptional signature based on risk scores summarized from the expression levels of the signature genes, the risk score thresholds trained from FFPE (or FF) samples could not be applied to FF (or FFPE) samples. On the other hand, we found that more than 90% of the relative expression orderings (REOs) of gene pairs in the FF samples were maintained in their paired FFPE samples and largely unaffected by the storage time. The result suggested that the REOs of gene pairs were highly robust against partial RNA degradation in FFPE samples. Finally, as a case study, we developed a REOs-based signature to distinguish liver cirrhosis from hepatocellular carcinoma (HCC) using FFPE samples. The signature was validated in four datasets of FFPE samples and eight datasets of FF samples. In conclusion, the valuable FFPE samples can be fully exploited to identify REOs-based diagnostic and prognostic signatures which could be robustly applicable to both FF samples and FFPE samples with degraded RNA.


PLOS ONE | 2013

An Integrated Approach to Uncover Driver Genes in Breast Cancer Methylation Genomes

Xiaopei Shen; Shan Li; Lin Zhang; Hongdong Li; Guini Hong; Xianxiao Zhou; Tingting Zheng; Wenjing Zhang; Chunxiang Hao; Tongwei Shi; Chunyang Liu; Zheng Guo

Background Cancer cells typically exhibit large-scale aberrant methylation of gene promoters. Some of the genes with promoter methylation alterations play “driver” roles in tumorigenesis, whereas others are only “passengers”. Results Based on the assumption that promoter methylation alteration of a driver gene may lead to expression alternation of a set of genes associated with cancer pathways, we developed a computational framework for integrating promoter methylation and gene expression data to identify driver methylation aberrations of cancer. Applying this approach to breast cancer data, we identified many novel cancer driver genes and found that some of the identified driver genes were subtype-specific for basal-like, luminal-A and HER2+ subtypes of breast cancer. Conclusion The proposed framework proved effective in identifying cancer driver genes from genome-wide gene methylation and expression data of cancer. These results may provide new molecular targets for potential targeted and selective epigenetic therapy.


Oncotarget | 2016

An individualized prognostic signature for gastric cancer patients treated with 5-Fluorouracil-based chemotherapy and distinct multi-omics characteristics of prognostic groups

Xiangyu Li; Hao Cai; Weicheng Zheng; Mengsha Tong; Hongdong Li; Lu Ao; Jing Li; Guini Hong; Mengyao Li; Qingzhou Guan; Sheng Yang; Da Yang; Xu Lin; Zheng Guo

5-Fluorouracil (5-FU)-based chemotherapy is currently the first-line treatment for gastric cancer. In this study, using gene expression profiles for a panel of cell lines with drug sensitivity data and two cohorts of patients, we extracted a signature consisting of two gene pairs (KCNE2 and API5, KCNE2 and PRPF3) whose within-sample relative expression orderings (REOs) could robustly predict prognoses of gastric cancer patients treated with 5-FU-based chemotherapy. This REOs-based signature was insensitive to experimental batch effects and could be directly applied to samples measured by different laboratories. Taking this unique advantage of the REOs-based signature, we classified gastric cancer samples of The Cancer Genome Atlas (TCGA) into two prognostic groups with distinct transcriptional characteristics, circumventing the usage of confounded TCGA survival data. We further showed that the two prognostic groups displayed distinct copy number, gene mutation and DNA methylation landscapes using the TCGA multi-omics data. The results provided hints for understanding molecular mechanisms determining prognoses of gastric cancer patients treated with 5-FU-based chemotherapy.


PLOS ONE | 2013

Genes Dysregulated to Different Extent or Oppositely in Estrogen Receptor-Positive and Estrogen Receptor-Negative Breast Cancers

Xianxiao Zhou; Tongwei Shi; Bailiang Li; Yuannv Zhang; Xiaopei Shen; Hongdong Li; Guini Hong; Chunyang Liu; Zheng Guo

Background Directly comparing gene expression profiles of estrogen receptor-positive (ER+) and estrogen receptor-negative (ER−) breast cancers cannot determine whether differentially expressed genes between these two subtypes result from dysregulated expression in ER+ cancer or ER− cancer versus normal controls, and thus would miss critical information for elucidating the transcriptomic difference between the two subtypes. Principal Findings Using microarray datasets from TCGA, we classified the genes dysregulated in both ER+ and ER− cancers versus normal controls into two classes: (i) genes dysregulated in the same direction but to a different extent, and (ii) genes dysregulated to opposite directions, and then validated the two classes in RNA-sequencing datasets of independent cohorts. We showed that the genes dysregulated to a larger extent in ER+ cancers than in ER− cancers enriched in glycerophospholipid and polysaccharide metabolic processes, while the genes dysregulated to a larger extent in ER− cancers than in ER+ cancers enriched in cell proliferation. Phosphorylase kinase and enzymes of glycosylphosphatidylinositol (GPI) anchor biosynthesis were upregulated to a larger extent in ER+ cancers than in ER− cancers, whereas glycogen synthase and phospholipase A2 were downregulated to a larger extent in ER+ cancers than in ER− cancers. We also found that the genes oppositely dysregulated in the two subtypes significantly enriched with known cancer genes and tended to closely collaborate with the cancer genes. Furthermore, we showed the possibility that these oppositely dysregulated genes could contribute to carcinogenesis of ER+ and ER− cancers through rewiring different subpathways. Conclusions GPI-anchor biosynthesis and glycogenolysis were elevated and hydrolysis of phospholipids was depleted to a larger extent in ER+ cancers than in ER− cancers. Our findings indicate that the genes oppositely dysregulated in the two subtypes are potential cancer genes which could contribute to carcinogenesis of both ER+ and ER− cancers through rewiring different subpathways.


Gene | 2015

Application of the rank-based method to DNA methylation for cancer diagnosis.

Hongdong Li; Guini Hong; Hui Xu; Zheng Guo

Detecting aberrant DNA methylation as diagnostic or prognostic biomarkers for cancer has been a topic of considerable interest recently. However, current classifiers based on absolute methylation values detected from a cohort of samples are typically difficult to be transferable to other cohorts of samples. Here, focusing on relative methylation levels, we employed a modified rank-based method to extract reversal pairs of CpG sites whose relative methylation level orderings differ between disease samples and normal controls for cancer diagnosis. The reversal pairs identified for five cancer types respectively show excellent prediction performance with the accuracy above 95%. Furthermore, when evaluating the reversal pairs identified for one cancer type in an independent cohorts of samples, we found that they could distinguish different subtypes of this cancer or different malignant stages including early stage of this cancer from normal controls. The identified reversal pairs also appear to be specific to cancer type. In conclusion, the reversal pairs detected by the rank-based method could be used for accurate cancer diagnosis, which are transferable to independent cohorts of samples.

Collaboration


Dive into the Guini Hong's collaboration.

Top Co-Authors

Avatar

Zheng Guo

Fujian Medical University

View shared research outputs
Top Co-Authors

Avatar

Hongdong Li

University of Electronic Science and Technology of China

View shared research outputs
Top Co-Authors

Avatar

Chunxiang Hao

University of Electronic Science and Technology of China

View shared research outputs
Top Co-Authors

Avatar

Lu Ao

Fujian Medical University

View shared research outputs
Top Co-Authors

Avatar

Xiaopei Shen

University of Electronic Science and Technology of China

View shared research outputs
Top Co-Authors

Avatar

Jinfeng Zou

University of Electronic Science and Technology of China

View shared research outputs
Top Co-Authors

Avatar

Lin Zhang

University of Electronic Science and Technology of China

View shared research outputs
Top Co-Authors

Avatar

Wenjing Zhang

University of Electronic Science and Technology of China

View shared research outputs
Top Co-Authors

Avatar

Chunyang Liu

Fujian Medical University

View shared research outputs
Top Co-Authors

Avatar

Hao Cai

Harbin Medical University

View shared research outputs
Researchain Logo
Decentralizing Knowledge