Guishan Zhang
University of Science and Technology, Sana'a
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Guishan Zhang.
Environmental Microbiology | 2016
Jun Zhao; Chao Xue; Guishan Zhang; Wei Ran; Boren Wang; Qirong Shen; Ruifu Zhang
Different fertilization managements of red soil, a kind of Ferralic Cambisol, strongly affected the soil properties and associated microbial communities. The association of the soil microbial community and functionality with long-term fertilization management in the unique low-productivity red soil ecosystem is important for both soil microbial ecology and agricultural production. Here, 454 pyrosequencing analysis of 16S recombinant ribonucleic acid genes and GeoChip4-NimbleGen-based functional gene analysis were used to study the soil bacterial community composition and functional genes involved in soil organic carbon degradation. Long-term nitrogen-containing chemical fertilization-induced soil acidification and fertility decline and significantly altered the soil bacterial community, whereas long-term organic fertilization and fallow management improved the soil quality and maintained the bacterial diversity. Short-term quicklime remediation of the acidified soils did not change the bacterial communities. Organic fertilization and fallow management supported eutrophic ecosystems, in which copiotrophic taxa increased in relative abundance and have a higher intensity of labile-C-degrading genes. However, long-term nitrogen-containing chemical fertilization treatments supported oligotrophic ecosystems, in which oligotrophic taxa increased in relative abundance and have a higher intensity of recalcitrant-C-degrading genes but a lower intensity of labile-C-degrading genes. Quicklime application increased the relative abundance of copiotrophic taxa and crop production, although these effects were utterly inadequate. This study provides insights into the interaction of soil bacterial communities, soil functionality and long-term fertilization management in the red soil ecosystem; these insights are important for improving the fertility of unique low-productivity red soil.
Molecular Plant-microbe Interactions | 2016
Yunpeng Liu; Lin Chen; Nan Zhang; Zunfeng Li; Guishan Zhang; Yu Xu; Qirong Shen; Ruifu Zhang
Mechanisms by which beneficial rhizobacteria promote plant growth include tryptophan-dependent indole-3-acetic acid (IAA) synthesis. The abundance of tryptophan in the rhizosphere, however, may influence the level of benefit provided by IAA-producing rhizobacteria. This study examined the cucumber-Bacillus amyloliquefaciens SQR9 system and found that SQR9, a bacterium previously shown to enhance the growth of cucumber, increased root secretion of tryptophan by three- to fourfold. Using a split-root system, SQR9 colonization of roots in one chamber not only increased tryptophan secretion from the noninoculated roots but also increased the expression of the cucumber tryptophan transport gene but not the anthranilate synthesis gene in those roots. The increased tryptophan in isolated rhizosphere exudates was sufficient to support increased IAA production by SQR9. Moreover, SQR9 colonization of roots in one chamber in the split-root system resulted in sufficient tryptophan production by the other roots to upregulate SQR9 IAA biosynthesis genes, including a 27-fold increase in the indole-3-acetonitrilase gene yhcX during subsequent colonization of those roots. Deletion of yhcX eliminated SQR9-mediated increases in root surface area, likely by reducing IAA-stimulated lateral root growth. This study demonstrates a chemical dialogue between B. amyloliquefaciens and cucumber in which this communication contributes to bacteria-mediated plant-growth enhancement.
Molecular Plant-microbe Interactions | 2017
Yunpeng Liu; Lin Chen; Gengwei Wu; Haichao Feng; Guishan Zhang; Qirong Shen; Ruifu Zhang
Colonization of plant growth-promoting rhizobacteria (PGPR) is critical for exerting their beneficial effects on the plant. Root exudation is a major factor influencing the colonization of both PGPR and soil-borne pathogens within the root system. However, the tripartite interaction of PGPR, plant roots, and soil-borne pathogens is poorly understood. We screened root exudates for signals that mediate tripartite interactions in the rhizosphere. In a split-root system, we found that root colonization of PGPR strain Bacillus amyloliquefaciens SQR9 on cucumber root was significantly enhanced by preinoculation with SQR9 or the soil-borne pathogen Fusarium oxysporum f. sp. cucumerinum, whereas root colonization of F. oxysporum f. sp. cucumerinum was reduced upon preinoculation with SQR9 or F. oxysporum f. sp. cucumerinum. Root exudates from cucumbers preinoculated with SQR9 or F. oxysporum f. sp. cucumerinum were analyzed and 109 compounds were identified. Correlation analysis highlighted eight compounds that significantly correlated with root colonization of SQR9 or F. oxysporum f. sp. cucumerinum. After performing colonization experiments with these chemicals, raffinose and tryptophan were shown to positively affect the root colonization of F. oxysporum f. sp. cucumerinum and SQR9, respectively. These results indicate that cucumber roots colonized by F. oxysporum f. sp. cucumerinum or SQR9 increase root secretion of tryptophan to strengthen further colonization of SQR9. In contrast, these colonized cucumber roots reduce raffinose secretion to inhibit root colonization of F. oxysporum f. sp. cucumerinum.
International Journal of Systematic and Evolutionary Microbiology | 2017
Guishan Zhang; Mohamed Fauzi Haroon; Ruifu Zhang; Xiaoyan Dong; Dandan Wang; Yunpeng Liu; Xiuzhu Dong; Ulrich Stingl
Two moderately halophilic marine bacterial strains of the family Rhodobacteraceae, designated ZGT108T and ZGT118T, were isolated from the brine-seawater interface at Erba Deep in the Red Sea (Saudi Arabia). Cells of both strains were aerobic, rod-shaped, non-motile, and Gram-stain-negative. The sequence similarity of the 16S rRNA genes of strains ZGT108T and ZGT118T was 94.9 %. The highest 16S rRNA gene sequence similarity of strain ZGT108T to its closest relative, Ruegeria conchae JCM 17315T, was 98.9 %, while the 16S rRNA gene of ZGT118T was most closely related to that of Ruegeria intermedia LMG 25539T (97.7 % similarity). The sizes of the draft genomes as presented here are 4 258 055 bp (strain ZGT108T) and 4 012 109 bp (strain ZGT118T), and the G+C contents of the draft genomes are 56.68 mol% (ZGT108T) and 62.94 mol% (ZGT108T). The combined physiological, biochemical, phylogenetic and genotypic data supported placement of both strains in the genus Ruegeria and indicated that the two strains are distinct from each other as well as from all other members in the genus Ruegeria. This was also confirmed by low DNA-DNA hybridization values (<43.6 %) and low ANI values (<91.8 %) between both strains and the most closely related Ruegeria species. Therefore, we propose two novel species in the genus Ruegeria to accommodate these novel isolates: Ruegeriaprofundi sp. nov. (type strain ZGT108T=JCM 19518T=ACCC 19861T) and Ruegeriamarisrubri sp. nov. (type strain ZGT118T=JCM 19519T=ACCC 19862T).
Genome Announcements | 2016
Guishan Zhang; Mohamed Fauzi Haroon; Ruifu Zhang; Ulrich Stingl
ABSTRACT Two Thiomicrospira strains, WB1 and XS5, were isolated from the Kebrit Deep brine-seawater interface in the Red Sea, Saudi Arabia. Here, we present the draft genome sequences of these gammaproteobacteria, which both produce sulfuric acid from thiosulfate in culture.
Biochemical and Biophysical Research Communications | 2018
Xiaoyan Dong; Yunpeng Liu; Guishan Zhang; Dandan Wang; Xuan Zhou; Jiahui Shao; Qirong Shen; Ruifu Zhang
Nitric oxide (NO) is an important gas signal that regulates many biological processes, and due to the high nitrogen recycling activity in the rhizosphere, NO is an important signaling molecule in this region. Thus, an understanding of the effect of NO on the rhizomicrobiome, especially on plant beneficial rhizobacteria, is important for the use of these bacteria in agriculture. In this study, the effect of exogenous NO on the beneficial rhizobacterium Bacillus amyloliquefaciens SQR9 was investigated. The results showed that low concentrations of NO increased the ability of the strain SQR9 to form biofilms, while high concentrations of NO inhibited the growth of this bacterium. The SQR9 gene yflM encodes nitric oxide synthase (NOS), which is used to synthesize NO, while the gene ykvO encodes a sepiapterin reductase that is used to synthesize tetrahydrobiopterin, the coenzyme of NOS. Isothermal titration calorimetry and high-performance liquid chromatography analyses demonstrated an interaction between YkvO and NADPH. SQR9 has two hmp genes, although only one was observed to be responsible for NO detoxification through oxidization. This study revealed the effect of NO on plant beneficial rhizobacterium and assessed the ability of this strain to adapt to exogenous NO, which will help to improve the application of this strain in agricultural production.
Genome Announcements | 2016
Guishan Zhang; Mohamed Fauzi Haroon; Ruifu Zhang; Ulrich Stingl
ABSTRACT Pseudoalteromonas sp. strain XI10 was isolated from the brine-seawater interface of Erba Deep in the Red Sea, Saudi Arabia. Here, we present the draft genome sequence of strain XI10, a gammaproteobacterium that synthesizes polysaccharides for biofilm formation when grown in liquid culture.
Microbial Cell Factories | 2015
Jiahui Shao; Shuqing Li; Nan Zhang; Xiaoshuang Cui; Xuan Zhou; Guishan Zhang; Qirong Shen; Ruifu Zhang
Soil Biology & Biochemistry | 2016
Li Sun; Ting Huang; Guishan Zhang; Jusheng Gao; Wei Ran; Dongchu Li; Qirong Shen; Ruifu Zhang
Molecular Plant-microbe Interactions | 2018
Gengwei Wu; Yunpeng Liu; Yu Xu; Guishan Zhang; Qirong Shen; Ruifu Zhang