Guixia Ling
Shenyang Pharmaceutical University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Guixia Ling.
Journal of Controlled Release | 2010
Guixia Ling; Peng Zhang; Wenping Zhang; Jin Sun; Xiaoxue Meng; Yimeng Qin; Yihui Deng; Zhonggui He
To improve the encapsulation efficiency and oral bioavailability of vincristine sulfate (VCR), novel self-assembled dextran sulphate-PLGA hybrid nanoparticles (DPNs) were successfully developed using self-assembly and nanoprecipitation method. By introducing the negative polymer of dextran sulphate sodium (DS), VCR was highly encapsulated (encapsulation efficiency up to 93.6%) into DPNs by forming electrostatic complex. In vitro release of VCR solution (VCR-Sol) and VCR-loaded DPNs (VCR-DPNs) in pH 7.4 PBS showed that about 80.4% of VCR released from VCR-DPNs after 96h and burst release was effectively reduced, indicating pronounced sustained-release characteristics. In vivo pharmacokinetics in rats after oral administration of VCR-Sol and VCR-DPNs indicated that the apparent bioavailability of VCR-DPNs was increased to approximate 3.3-fold compared to that of VCR-Sol. The cellular uptake experiments were conducted by quantitative assay of VCR cellular accumulation and fluorescence microscopy imaging of fluorescent labeled DPNs in two human breast cancer cells including MCF-7 and P-glycoprotein over-expressing MCF-7/Adr cells. The relative cellular uptake of VCR-DPNs was 12.4-fold higher than that of VCR-Sol in MCF-7/Adr cells implying that P-glycoprotein-mediated drug efflux was diminished by the introduction of DPNs. The new DPNs might provide an effective strategy for oral delivery of VCR with improved encapsulation efficiency and oral bioavailability.
Nanomedicine: Nanotechnology, Biology and Medicine | 2012
Peng Zhang; Guixia Ling; Xiaolei Pan; Jin Sun; Tianhong Zhang; Xiaohui Pu; Shiliang Yin; Zhonggui He
UNLABELLED Novel nanostructured lipid-dextran sulfate hybrid carriers (NLDCs) were successfully developed for sustained delivery of water-soluble cationic mitoxantrone hydrochloride (MTO) and overcoming multidrug resistance. The introduction of negative polymer of dextran sulfate sodium significantly improved the encapsulation efficiency (97.4%) and sustained the release of MTO (86.9% at 72 hours). In vivo pharmacokinetics in rats after intravenous administration demonstrated that MTO-loaded NLDCs (MTO-NLDCs) had higher area under the curve and longer half-life than MTO solution (MTO-Sol). In the biodistribution study, NLDCs significantly improved the MTO levels in plasma, spleen, and brain, and decreased the distribution of MTO in heart and kidney. In comparison with MTO-Sol, MTO-NLDCs efficiently enhanced cytotoxicity through the higher accumulation of MTO in breast cancer resistance protein (BCRP)-overexpressing MCF-7/MX cells. MTO-NLDCs entered into the resistant cancer cells by the clathrin-mediated endocytosis pathway, which escaped the efflux induced by BCRP transporter and thereby overcame the multidrug resistance of MCF-7/MX cells. FROM THE CLINICAL EDITOR In this study, novel nanostructured lipid-dextran sulfate hybrid carriers were synthesized and utilized for sustained delivery of mitoxantrone hydrochloride. The utilized methods successfully addressed multidrug resistance to this chemotherapy agent.
Analytical Letters | 2006
Guixia Ling; Jin Sun; Jingling Tang; Xiaodi Xu; Yinghua Sun; Zhonggui He
Abstract A rapid, sensitive, and specific liquid chromatography‐electrospray ionization mass spectrometric (LC‐ESI‐MS) method has been developed for quantification of gliclazide in human plasma. The analyte and tolbutamide (internal standard, I.S.) were extracted from plasma samples with n‐hexane–dichloromethane (1:1, v/v) and analyzed on a C18 column. The chromatographic separation was achieved within 4.0 min by using methanol–0.5% formic acid (80:20, v/v) as mobile phase and the flow rate was 1.0 mL/min. Ion signals m/z 324.0 and 271.0 for gliclazide and internal standard were measured in the positive mode, respectively. The method was linear within the range of 2.5–2000 ng/mL. The lower limit of quantification (LLOQ) was 2.5 ng/mL. The intra‐ and inter‐day precisions were lower than 2.8% in terms of relative standard deviation (RSD). The inter‐day relative error (RE) as determined from quality control samples (QCs) ranged from −1.93% to 1.85%. This validated method was successfully applied for the evaluation of pharmacokinetic profiles of gliclazide modified‐release tablets in 20 healthy volunteers.
Biomedical Chromatography | 2011
Guixia Ling; Peng Zhang; Jin Sun; Wenping Zhang; Qiang Fu; Tianhong Zhang; Yihui Deng; Zhonggui He
A rapid and sensitive method for simultaneous determination of vincristine and verapamil in rat plasma was first developed and validated, using high-performance liquid chromatography-tandem mass spectrometry (LC-MS/MS) in multiple reaction monitoring (MRM) mode via electrospray ionization (ESI). The method, which required a small sample volume (25 µL) of plasma, was linear in the concentration range of 0.5-500 ng/mL for vincristine and 0.1-100.0 ng/mL for verapamil. Finally, the method was successfully employed in a pharmacokinetic study of vincristine and verapamil in rats after an oral administration of a dual-agent formulation containing vincristine and verapamil.
Drug Development and Industrial Pharmacy | 2016
Guixia Ling; Tianhong Zhang; Peng Zhang; Jin Sun; Zhonggui He
Abstract Novel nanostructured lipid–carrageenan hybrid carriers (NLCCs) were exploited for controlled delivery of water soluble chemotherapeutic agent mitoxantrone hydrochloride (MTO) with high loading capacity, sustained release property, and potential for improving oral bioavailability and antitumor efficacy. By introducing the negative polymer of carrageenan, MTO was highly incorporated into NLCCs with encapsulation efficiency of 95.8% by electrostatic interaction. In vivo pharmacokinetics of MTO solution (MTO-Sol) and MTO-NLCCs in rats demonstrated that the apparent bioavailability of MTO-NLCCs was increased to approximate 3.5-fold compared to that of MTO-Sol. The cytotoxicity investigations by MTT method indicated that NLCCs could significantly enhanced the antitumor efficacy against resistant MCF-7/MX cells. The relative cellular association of MTO-NLCCs was 9.2-fold higher than that of MTO-Sol in breast cancer resistance protein (BCRP) over-expressing MCF-7/MX cells, implying that BCRP-mediated drug efflux was diminished by the introduction of NLCCs. The endocytosis inhibition study implied that the NLCCs entered the MCF-7/MX cells by clathrin-mediated endocytosis process, which can bypass the efflux of MTO mediated by BCRP. The new developed NLCCs provide an effective strategy for oral delivery of water-soluble MTO with improved encapsulation efficiency, oral bioavailability, and cytotoxicity against resistant breast cancer cells.
International Journal of Nanomedicine | 2016
Guixia Ling; Tianhong Zhang; Peng Zhang; Jin Sun; Zhonggui He
Multidrug resistance (MDR) is a severe obstacle to successful chemotherapy due to its complicated nature that involves multiple mechanisms, such as drug efflux by transporters (P-glycoprotein and breast cancer resistance protein, BCRP) and anti-apoptotic defense (B-cell lymphoma, Bcl-2). To synergistically and completely reverse MDR by simultaneous inhibition of pump and non-pump cellular resistance, three-in-one multifunctional lipid-sodium glycocholate (GcNa) nanocarriers (TMLGNs) have been designed for controlled co-delivery of water-soluble cationic mitoxantrone hydrochloride (MTO), cyclosporine A (CsA – BCRP inhibitor), and GcNa (Bcl-2 inhibitor). GcNa and dextran sulfate were incorporated as anionic compounds to enhance the encapsulation efficiency of MTO (up to 97.8%±1.9%) and sustain the release of cationic MTO by electrostatic interaction. The results of a series of in vitro and in vivo investigations indicated that the TMLGNs were taken up by the resistant cancer cells by an endocytosis pathway that escaped the efflux induced by BCRP, and the simultaneous release of CsA with MTO further efficiently inhibited the efflux of the released MTO by BCRP; meanwhile GcNa induced the apoptosis process, and an associated synergistic antitumor activity and reversion of MDR were achieved because the reversal index was almost 1.0.
Aaps Pharmscitech | 2017
Menglin Wang; Longwei Li; Junxia Xie; Yinghua Sun; Guixia Ling; Zhonggui He
ABSTRACTTopical delivery has many benefits toward NSAIDs administration, and the best-selling transdermal preparation in 2015 was the NSAID patch MOHRUS®. Herein, we report a ketoprofen adhesive patch (KAP) and evaluate the penetration and absorption compared to MOHRUS®. Microdialysis sampling technique was applied to determine drug penetration in the dermis and subcutaneous tissue. Simultaneously, blood samples were withdrawn over time to obtain the drug absorption in plasma. The ketoprofen concentrations in the dermis, subcutaneous tissue, and plasma were compared with the commercially available patch (MOHRUS®). Based on the detection, pharmacokinetic parameters including Cmax, Tmax, and AUC0–8h were determined for both the formulations. No significant differences were found in the dermis, subcutaneous tissue, and plasma in rats according to the bioequivalence assessment. The KAP demonstrated multiple therapeutic advantages including the controlled drug release and the sustained drug concentration in the skin as well as in plasma. The pharmacokinetic study coupled with microdialysis sampling provided an effective strategy to evaluate transdermal delivery.
Colloids and Surfaces B: Biointerfaces | 2013
Qiang Fu; Jin Sun; Dong Zhang; Mo Li; Yongjun Wang; Guixia Ling; Xiaohong Liu; Yinghua Sun; Xiaofan Sui; Cong Luo; Le Sun; Xiaopeng Han; He Lian; Meng Zhu; Siling Wang; Zhonggui He
Biomaterials | 2011
Peng Zhang; Guixia Ling; Jin Sun; Tianhong Zhang; Yue Yuan; Yongbing Sun; Zhiyuan Wang; Zhonggui He
Archive | 2016
Peng Zhang; Jin Sun; Zhonggui He; Guixia Ling; Tianhong Zhang