Guiying Cui
Emory University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Guiying Cui.
The Journal of Physiology | 2007
Guiying Cui; Alexander C. Meyer; Irina E. Calin-Jageman; Jakob Neef; Françoise Haeseleer; Tobias Moser; Amy Lee
Sound coding at the auditory inner hair cell synapse requires graded changes in neurotransmitter release, triggered by sustained activation of presynaptic Cav1.3 voltage‐gated Ca2+ channels. Central to their role in this regard, Cav1.3 channels in inner hair cells show little Ca2+‐dependent inactivation, a fast negative feedback regulation by incoming Ca2+ ions, which depends on calmodulin association with the Ca2+ channel α1 subunit. Ca2+‐dependent inactivation characterizes nearly all voltage‐gated Ca2+ channels including Cav1.3 in other excitable cells. The mechanism underlying the limited autoregulation of Cav1.3 in inner hair cells remains a mystery. Previously, we established calmodulin‐like Ca2+‐binding proteins in the brain and retina (CaBPs) as essential modulators of voltage‐gated Ca2+ channels. Here, we demonstrate that CaBPs differentially modify Ca2+ feedback to Cav1.3 channels in transfected cells and explore their significance for Cav1.3 regulation in inner hair cells. Of multiple CaBPs detected in inner hair cells (CaBP1, CaBP2, CaBP4 and CaBP5), CaBP1 most efficiently blunts Ca2+‐dependent inactivation of Cav1.3. CaBP1 and CaBP4 both interact with calmodulin‐binding sequences in Cav1.3, but CaBP4 more weakly inhibits Ca2+‐dependent inactivation than CaBP1. Ca2+‐dependent inactivation is marginally greater in inner hair cells from CaBP4−/− than from wild‐type mice, yet CaBP4−/− mice are not hearing‐impaired. In contrast to CaBP4, CaBP1 is strongly localized at the presynaptic ribbon synapse of adult inner hair cells both in wild‐type and CaBP4−/− mice and therefore is positioned to modulate native Cav1.3 channels. Our results reveal unexpected diversity in the strengths of CaBPs as Ca2+ channel modulators, and implicate CaBP1 rather than CaBP4 in conferring the anomalous slow inactivation of Cav1.3 Ca2+ currents required for auditory transmission.
The Journal of Neuroscience | 2008
Kuai Yu; Qinghuan Xiao; Guiying Cui; Amy S. Lee; H. Criss Hartzell
Mutations in the bestrophin-1 (Best1) gene are linked to several kinds of macular degeneration in both humans and dogs. Although bestrophins have been shown clearly to be Cl− ion channels, it is controversial whether Cl− channel dysfunction can explain the diseases. It has been suggested that bestrophins are multifunctional proteins: they may regulate voltage-gated Ca2+ channels in addition to functioning as Cl− channels. Here, we show that human Best1 gene (hBest1) differentially modulates CaV1.3 (L-type) voltage-gated Ca2+ channels through association with the CaVβ subunit. In transfected human embryonic kidney 293 cells, hBest1 inhibited CaV1.3. Inhibition of CaV1.3 was not observed in the absence of the β subunit. Also, the hBest1 C terminus binds to CaVβ subunits, suggesting that the effect of hBest1 was mediated by the CaVβ subunit. The region of hBest1 responsible for the effect was localized to a region (amino acids 330–370) in the cytoplasmic C terminus that contains a predicted src-homology-binding domain that is not present in other bestrophin subtypes. Mutation of Pro330 and Pro334 abolished the effects of hBest1 on CaV1.3. The effect was specific to hBest1; it was not observed with mouse Best1 (mBest1), mBest2, or mBest3. Wild-type hBest1 and the disease-causing mutants R92S, G299R, and D312N inhibited CaV currents the same amount, whereas the A146K and G222E mutants were less effective. We propose that hBest1 regulates CaV channels by interacting with the CaVβ subunit and altering channel availability. Our findings reveal a novel function of bestrophin in regulation of CaV channels and suggest a possible mechanism for the role of hBest1 in macular degeneration.
Proceedings of the National Academy of Sciences of the United States of America | 2008
I. King Jordan; Karthik C. Kota; Guiying Cui; Chris Thompson; Nael A. McCarty
The cystic fibrosis transmembrane conductance regulator (CFTR) is a member of the ATP-binding cassette (ABC) transporter superfamily, an ancient family of proteins found in all phyla. In nearly all cases, ABC proteins are transporters that couple the hydrolysis of ATP to the transmembrane movement of substrate via an alternating access mechanism. In contrast, CFTR is best known for its activity as an ATP-dependent chloride channel. We asked why CFTR, which shares the domain architecture of ABC proteins that function as transporters, exhibits functional divergence. We compared CFTR protein sequences to those of other ABC transporters, which identified the ABCC4 proteins as the closest mammalian paralogs, and used statistical analysis of the CFTR-ABCC4 multiple sequence alignment to identify the specific domains and residues most likely to be involved in the evolutionary transition from transporter to channel activity. Among the residues identified as being involved in CFTR functional divergence, by virtue of being both CFTR-specific and conserved among all CFTR orthologs, was R352 in the sixth transmembrane helix (TM6). Patch-clamp experiments show that R352 interacts with D993 in TM9 to stabilize the open-channel state; D993 is absolutely conserved between CFTRs and ABCC4s. These data suggest that CFTR channel activity evolved, at least in part, by converting the conformational changes associated with binding and hydrolysis of ATP, as are found in true ABC Transporters, into an open permeation pathway by means of intraprotein interactions that stabilize the open state. This analysis sets the stage for understanding the evolutionary and functional relationships that make CFTR a unique ABC transporter protein.
The Journal of Membrane Biology | 2008
Guiying Cui; Zhi-Ren Zhang; Andrew R. W. O’Brien; Binlin Song; Nael A. McCarty
Arginine 352 (R352) in the sixth transmembrane domain of the cystic fibrosis transmembrane conductance regulator (CFTR) previously was reported to form an anion/cation selectivity filter and to provide positive charge in the intracellular vestibule. However, mutations at this site have nonspecific effects, such as inducing susceptibility of endogenous cysteines to chemical modification. We hypothesized that R352 stabilizes channel structure and that charge-destroying mutations at this site disrupt pore architecture, with multiple consequences. We tested the effects of mutations at R352 on conductance, anion selectivity and block by the sulfonylurea drug glipizide, using recordings of wild-type and mutant channels. Charge-altering mutations at R352 destabilized the open state and altered both selectivity and block. In contrast, R352K-CFTR was similar to wild-type. Full conductance state amplitude was similar to that of wild-type CFTR in all mutants except R352E, suggesting that R352 does not itself form an anion coordination site. In an attempt to identify an acidic residue that may interact with R352, we found that permeation properties were similarly affected by charge-reversing mutations at D993. Wild-type-like properties were rescued in R352E/D993R-CFTR, suggesting that R352 and D993 in the wild-type channel may interact to stabilize pore architecture. Finally, R352A-CFTR was sensitive to modification by externally applied MTSEA+, while wild-type and R352E/D993R-CFTR were not. These data suggest that R352 plays an important structural role in CFTR, perhaps reflecting its involvement in forming a salt bridge with residue D993.
PLOS ONE | 2013
Kazi Shefaet Rahman; Guiying Cui; Stephen C. Harvey; Nael A. McCarty
Mutations in the gene encoding the cystic fibrosis transmembrane conductance regulator protein (CFTR) cause cystic fibrosis (CF), the most common life-shortening genetic disease among Caucasians. Although general features of the structure of CFTR have been predicted from homology models, the conformational changes that result in channel opening and closing have yet to be resolved. We created new closed- and open-state homology models of CFTR, and performed targeted molecular dynamics simulations of the conformational transitions in a channel opening event. The simulations predict a conformational wave that starts at the nucleotide binding domains and ends with the formation of an open conduction pathway. Changes in side-chain interactions are observed in all major domains of the protein, and experimental confirmation was obtained for a novel intra-protein salt bridge that breaks near the end of the transition. The models and simulation add to our understanding of the mechanism of ATP-dependent gating in this disease-relevant ion channel.
Journal of Biological Chemistry | 2013
Guiying Cui; Cody S. Freeman; Taylor L. Knotts; Chengyu Z. Prince; Christopher Kuang; Nael A. McCarty
Background: Two salt bridges, Arg347–Asp924 and Arg352–Asp993, have been identified in CFTR, but the timing of their interaction remains unknown. Results: Arg347-Asp924-Asp993 form a triangular salt bridge and work together with the Arg352-Asp993 salt bridge to maintain the open pore architecture of CFTR. Conclusion: These salt bridge residues interact and contribute differently in stabilizing the open pore during gating cycle. Significance: Understanding the CFTR pore dynamic open-closed transition is crucial for rational drug design. Previous studies have identified two salt bridges in human CFTR chloride ion channels, Arg352-Asp993 and Arg347-Asp924, that are required for normal channel function. In the present study, we determined how the two salt bridges cooperate to maintain the open pore architecture of CFTR. Our data suggest that Arg347 not only interacts with Asp924 but also interacts with Asp993. The tripartite interaction Arg347-Asp924-Asp993 mainly contributes to maintaining a stable s2 open subconductance state. The Arg352-Asp993 salt bridge, in contrast, is involved in stabilizing both the s2 and full (f) open conductance states, with the main contribution being to the f state. The s1 subconductance state does not require either salt bridge. In confirmation of the role of Arg352 and Asp993, channels bearing cysteines at these sites could be latched into a full open state using the bifunctional cross-linker 1,2-ethanediyl bismethanethiosulfonate, but only when applied in the open state. Channels remained latched open even after washout of ATP. The results suggest that these interacting residues contribute differently to stabilizing the open pore in different phases of the gating cycle.
The Journal of Neuroscience | 2007
Amy Lee; Amber Jimenez; Guiying Cui; Françoise Haeseleer
CaBP4 is a calmodulin-like neuronal calcium-binding protein that is crucial for the development and/or maintenance of the cone and rod photoreceptor synapse. Previously, we showed that CaBP4 directly regulates Cav1 L-type Ca2+ channels, which are essential for normal photoreceptor synaptic transmission. Here, we show that the function of CaBP4 is regulated by phosphorylation. CaBP4 is phosphorylated by protein kinase C ζ (PKCζ) at serine 37 both in vitro and in the retina and colocalizes with PKCζ in photoreceptors. CaBP4 phosphorylation is greater in light-adapted than dark-adapted mouse retinas. In electrophysiological recordings of cells transfected with Cav1.3 and CaBP4, mutation of the serine 37 to alanine abolished the effect of CaBP4 in prolonging the Ca2+ current through Cav1.3 channel, whereas inactivating mutations in the CaBP4 Ca2+-binding sites strengthened Cav1.3 modulation. These findings demonstrate how light-stimulated changes in CaBP4 phosphorylation and Ca2+ binding may regulate presynaptic Ca2+ signals in photoreceptors.
The Journal of General Physiology | 2014
Guiying Cui; Kazi Shefaet Rahman; Daniel T. Infield; Christopher Kuang; Chengyu Z. Prince; Nael A. McCarty
Disease-associated mutation of charged amino acids in extracellular loop 1 of CFTR may reduce chloride flow by damaging the outer pore architecture.
American Journal of Physiology-lung Cellular and Molecular Physiology | 2016
Daniel T. Infield; Guiying Cui; Christopher Kuang; Nael A. McCarty
The cystic fibrosis (CF) transmembrane conductance regulator (CFTR) is a chloride ion channel, the dysfunction of which directly leads to the life-shortening disease CF. Extracellular loop 1 (ECL1) of CFTR contains several residues involved in stabilizing the open state of the channel; some, including D110, are sites of disease-associated gating mutations. Structures from related proteins suggest that the position of CFTRs extracellular loops may change considerably during gating. To better understand the roles of ECL1 in CFTR function, we utilized functional cysteine cross-linking to determine the effects of modulation of D110C-CFTR and of a double mutant of D110C with K892C in extracellular loop 4 (ECL4). The reducing agent DTT elicited a large potentiation of the macroscopic conductance of D110C/K892C-CFTR, likely due to breakage of a spontaneous disulfide bond between C110 and C892. DTT-reduced D110C/K892C-CFTR was rapidly inhibited by binding cadmium ions with high affinity, suggesting that these residues frequently come in close proximity in actively gating channels. Effects of DTT and cadmium on modulation of pore gating were demonstrated at the single-channel level. Finally, disulfided D110C/K892C-CFTR channels were found to be less sensitive than wild-type or DTT-treated D110C/K892C-CFTR channels to stimulation by IBMX, suggesting an impact of this conformational restriction on channel activation by phosphorylation. The results are best explained in the context of a model of CFTR gating wherein stable channel opening requires correct positioning of functional elements structurally influenced by ECL1.
American Journal of Physiology-lung Cellular and Molecular Physiology | 2016
Guiying Cui; Netaly Khazanov; Brandon Stauffer; Daniel T. Infield; Barry R. Imhoff; Hanoch Senderowitz; Nael A. McCarty
VX-770 (Ivacaftor) has been approved for clinical usage in cystic fibrosis patients with several CFTR mutations. Yet the binding site(s) on CFTR for this compound and other small molecule potentiators are unknown. We hypothesize that insight into this question could be gained by comparing the effect of potentiators on CFTR channels from different origins, e.g., human, mouse, and Xenopus (frog). In the present study, we combined this comparative molecular pharmacology approach with that of computer-aided drug discovery to identify and characterize new potentiators of CFTR and to explore possible mechanism of action. Our results demonstrate that 1) VX-770, NPPB, GlyH-101, P1, P2, and P3 all exhibited ortholog-specific behavior in that they potentiated hCFTR, mCFTR, and xCFTR with different efficacies; 2) P1, P2, and P3 potentiated hCFTR in excised macropatches in a manner dependent on the degree of PKA-mediated stimulation; 3) P1 and P2 did not have additive effects, suggesting that these compounds might share binding sites. Also 4) using a pharmacophore modeling approach, we identified three new potentiators (IOWH-032, OSSK-2, and OSSK-3) that have structures similar to GlyH-101 and that also exhibit ortholog-specific potentiation of CFTR. These could potentially serve as lead compounds for development of new drugs for the treatment of cystic fibrosis. The ortholog-specific behavior of these compounds suggest that a comparative pharmacology approach, using cross-ortholog chimeras, may be useful for identification of binding sites on human CFTR.