Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Guiying Nie is active.

Publication


Featured researches published by Guiying Nie.


Cancer | 2002

Presence of active gelatinases in endometrial carcinoma and correlation of matrix metalloproteinase expression with increasing tumor grade and invasion

Lisa A. Di Nezza; Aileen Misajon; Jin Zhang; Tom Jobling; Michael A. Quinn; Andrew G. Östör; Guiying Nie; Alexander Lopata; Lois A. Salamonsen

The actions of the extracellular‐matrix degrading enzymes, matrix metalloproteinases (MMPs), are implicated in tumorigenesis. The cellular localization of MMP‐2, MMP‐9, membrane type 1 (MT1)‐MMP, tissue inhibitors of metalloproteinases (TIMPs) 1‐3, and the presence of active gelatinases were investigated in endometrial carcinoma.


Biology of Reproduction | 2000

Progesterone Inhibits Activation of Latent Matrix Metalloproteinase (MMP)-2 by Membrane-Type 1 MMP: Enzymes Coordinately Expressed in Human Endometrium

Jin Zhang; Anne L. Hampton; Guiying Nie; Lois A. Salamonsen

Abstract Matrix metalloproteinases (MMP) have specific spatial and temporal expression patterns in human endometrium and are critical for menstruation. Expression and activation mechanisms for proMMP-2 differ from other MMPs; in many cells proMMP-2 is specifically activated by membrane-type (MT)-MMPs. We examined the expression and localization of proMMP-2, MT1-MMP, and MT2-MMP in human endometrium across the menstrual cycle; and we examined the expression of MT1-MMP and activation of proMMP-2 in cultured endometrial stromal cells and their regulation by progesterone. MMP-2 was immunolocalized in 25 of 32 endometrial samples in all cellular compartments but with greatest intensity in degrading menstrual tissue. MT1-MMP mRNA was present throughout the cycle, and immunoreactive protein was detected in 24 of 32 samples, with the strongest staining in subsets of macrophages, neutrophils, and granular lymphocytes (but not mast cells or eosinophils) during the menstrual, mid-proliferative and mid-secretory phases. Patchy epithelial staining and staining of decidual cells, often periglandular in menstrual tissue, were also seen. MT2-MMP was more widespread than MT1-MMP without apparent cyclical variation and with maximal intensity in glandular epithelium. Cultured endometrial stromal cells released proMMP-2, and progesterone treatment significantly reduced the percentage level of its active (62 kDa) form (22.5 ± 1.8% vs. 3.0 ± 1.3%, without and with treatment, respectively, mean ± SEM, P < 0.0001). This activation was blocked by a specific MMP inhibitor and restored following inhibitor removal. Progesterone also attenuated cell expression of MT1-MMP mRNA. We postulate that MT1-MMP activates proMMP-2 in endometrium, this activity being increased at the end of the cycle when progesterone levels fall, thus contributing to menstruation.


Reproduction, Fertility and Development | 2009

Society for Reproductive Biology Founders' Lecture 2009. Preparing fertile soil: the importance of endometrial receptivity

Lois A. Salamonsen; Guiying Nie; Natalie J. Hannan; Evdokia Dimitriadis

The human endometrium is receptive for implantation of a blastocyst for only 4-5 days in each menstrual cycle. Failure of implantation is a major reason for infertility in women and the inability to achieve endometrial receptivity is responsible for much of the failure of reproductive technologies. Endometrial receptivity requires changes in the uterine luminal and glandular cells, particularly in terms of their secretory capacity and altered expression of adhesion molecules. In parallel with these changes, decidualisation (differentiation) of the endometrial stroma is initiated in women during the receptive phase, regardless of the presence of a blastocyst. Increased leucocyte numbers are also important. The microenvironments provided by the endometrium during the receptive phase and that support implantation are highly complex and constantly changing as implantation progresses. The present review provides a comprehensive overview of the cellular and molecular events of human implantation. It also summarises work from our laboratories emphasising the functional importance of proprotein convertase 6, along with key cytokines (interleukin-11, leukaemia inhibitory factor, activin A) and chemokines (including CX3CL1 and CCL14), during implantation. Of particular importance is how these mediators contribute to receptivity and how they are disturbed in infertile women. Factors that are critical for uterine receptivity may also be manipulated to provide new contraceptive strategies for women.


The International Journal of Developmental Biology | 2010

Local regulation of implantation at the human fetal-maternal interface

Evdokia Dimitriadis; Guiying Nie; Natalie J. Hannan; Premila Paiva; Lois A. Salamonsen

Embryo implantation and formation of a functional placenta are complex processes that require a plethora of regulatory molecules. In recent years, many of these mediators have been identified, often from studies in experimental animals. Furthermore, their expression patterns at the embryo-maternal interface in women have been characterized and provide clues to their potential actions. What has been missing in most cases is any experimental demonstration of their function. Proteases, cytokines and chemokines are among the molecules identified at the embryo-maternal interface. Functional studies of the protease, proprotein convertase (PC)6, the gp130 cytokines, leukemia inhibitory factor (LIF) and interleukin (IL)11 and the chemokines, CX3CL1 and CCL14 demonstrate potential actions within the uterine cavity. These actions include: enhancing blastocyst development, modifying adhesive properties of the blastocyst and the uterine epithelial surface, and providing chemotactic guidance to the blastocyst. As implantation proceeds, PC6 and IL-11 also act to drive decidualization. The products (proteases, chemokines and cytokines) produced by these decidual cells provide a unique environment. This is important for both directing and restraining trophoblast invasion and for leukocyte trafficking into the decidua until the placenta is fully established.


Biochemical Journal | 2003

Identification and cloning of two isoforms of human high-temperature requirement factor A3 (Htra3), characterization of its genomic structure and comparison of its tissue distribution with HtrA1 and HtrA2

Guiying Nie; Anne L. Hampton; Ying Li; Jock K. Findlay; Lois A. Salamonsen

In the present study, we identified an additional member of the human high-temperature requirement factor A (HtrA) protein family, called pregnancy-related serine protease or HtrA3, which was most highly expressed in the heart and placenta. We cloned the full-length sequences of two forms (long and short) of human HtrA3 mRNA, located the gene on chromosome 4p16.1, determined its genomic structure and revealed how the two mRNA variants are produced through alternative splicing. The alternative splicing was also verified by Northern blotting. Four distinct domains were found for the long form HtrA3 protein: (i) an insulin/insulin-like growth factor binding domain, (ii) a Kazal-type S protease-inhibitor domain, (iii) a trypsin protease domain and (iv) a PDZ domain. The short form is identical to the long form except it lacks the PDZ domain. Comparison of all members of human HtrA proteins, including their isoforms, suggests that both isoforms of HtrA3 represent active serine proteases, that they may have different substrate specificities and that HtrA3 may have similar functions to HtrA1. All three HtrA family members showed very different mRNA-expression patterns in 76 human tissues, indicating a specific function for each. Interestingly, both HtrA1 and HtrA3 are highly expressed in the placenta. Identification of the tissue-specific function of each HtrA family member is clearly of importance.


Biology of Reproduction | 2005

Inhibiting Uterine PC6 Blocks Embryo Implantation: An Obligatory Role for a Proprotein Convertase in Fertility

Guiying Nie; Ying Li; Min Wang; Yi-Xun Liu; Jock K. Findlay; Lois A. Salamonsen

Abstract Successful embryo implantation involves complex interactions between the embryo and the uterus and is critical in establishing pregnancy. Proprotein convertase (PC) 6 (PC6) is one of the PC endoproteases regulating protein function through posttranslational activation of precursor proteins, including growth and differentiation factors. Here we show that PC6 protein is induced in the uterine stromal cells specifically at the site of embryo attachment during early pregnancy in mice. In vivo blocking of uterine production of PC6 protein using morpholino antisense oligonucleotides in mice resulted in total inhibition of implantation, revealing a vital role for PC6 in modulating the uterus for embryo implantation. Studies in primates (rhesus monkey and human) showed a dramatic upregulation of endometrial PC6 during the phase of uterine receptivity and at implantation, particularly during a critical uterine cell differentiation process termed decidualization. Thus, the current studies have demonstrated that PC6 is an essential molecule in modulating uterine function to support the establishment of embryo implantation. Interestingly, PC6 is one of the PCs identified to be important in processing the coat protein of HIV; inhibition of PCs has been suggested to be an effective approach to reduce HIV transmission. We therefore propose the novel concept that PC6 could be a potential nonhormonal target in the female reproductive tract for dual protection for women, both in preventing pregnancy and reducing HIV infection.


Biology of Reproduction | 2003

Specific and Transient Up-Regulation of Proprotein Convertase 6 at the Site of Embryo Implantation and Identification of a Unique Transcript in Mouse Uterus During Early Pregnancy

Guiying Nie; Ying Li; Hiroyuki Minoura; Jock K. Findlay; Lois A. Salamonsen

Abstract The present investigation was conducted to identify and characterize an mRNA that was found by RNA differential display to be uniquely regulated at the sites of embryo implantation in mouse uterus. This mRNA was upregulated at the sites of blastocyst attachment at implantation and was identified as proprotein convertase 6 (PC6). PC6 mRNA level was low in the nonpregnant and early pregnant uterus before embryo implantation commenced (before Day 4.5, vaginal plug = Day 0). During the initiation and progression of blastocyst attachment (around Day 4.5), the mRNA was dramatically upregulated only at the implantation sites. The increased transcription was maintained on Day 5.5; the mRNA level declined slightly on Day 6.5 and then fell sharply to reach the nonpregnant level around Days 8.5–10.5. Thus, the upregulation is transient and coincides with the period of embryo attachment and implantation; it is also very specific to implantation sites. In situ hybridization analysis localized the mRNA expression predominantly in the decidual cells immediately surrounding the implanting embryo at the antimesometrial pole. Additionally, multiple mRNA species resulting from alternative splicing were observed in the uterus, as previously reported in the intestine and brain, and further analysis of these transcripts identified a uterine-specific PC6 mRNA. These data lead us to suggest that PC6 plays an important role in the processes of stromal cell decidualization and embryo implantation.


Fertility and Sterility | 2013

Proteomics of the human endometrium and uterine fluid: a pathway to biomarker discovery

Lois A. Salamonsen; Tracey Edgell; Luk Rombauts; Andrew N. Stephens; David M. Robertson; Adam Rainczuk; Guiying Nie; Natalie J. Hannan

Failure of the endometrium to achieve receptivity results in infertility, and it is also a rate-limiting step in inxa0vitro fertilization (IVF) success. The microenvironments provided by the endometrium during the receptive phase and that support implantation are highly complex and constantly changing as implantation progresses. Although a number of gene array studies have defined mRNA changes across the cycle, with infertility, and in IVF cycles, these have not generally been informative due in part to the subsequent regulation of transcription and posttranslational modifications of the proteins. State-of-the-art proteomic technologies now enable analysis of changes in the endometrium and its secretome related to cycle phase and associated with infertility. These techniques include two-dimensional differential in-gel electrophoresis, isobaric tags for relative and absolute quantitation, and multiplex analyses of selected panels of markers. Subsequent definition of cellular location, timing of production of identified proteins, and their regulation by steroid hormones and blastocyst-derived factors provide indications of their functions and their relationship to the establishment of pregnancy. Proteins discovered by proteomic analyses and fully evaluated will provide the differentiative profiles necessary to inform clinical practice and serve as an end point for optimizing stimulation cycles in IVF clinics as well as more clearly defining the molecular mechanisms underlying successful implantation.


Biology of Reproduction | 2006

Serine Peptidase HTRA3 Is Closely Associated with Human Placental Development and Is Elevated in Pregnancy Serum

Guiying Nie; Ying Li; Kathryn Hale; Hidetaka Okada; Ursula Manuelpillai; Euan M. Wallace; Lois A. Salamonsen

Abstract HTRA3 is a newly identified serine peptidase of the mammalian HTRA (high-temperature requirement factor A) family, that is upregulated dramatically during mouse placental development. The current study determined whether HTRA3 was involved in human placentation. During the menstrual cycle, HTRA3 was expressed primarily in the endometrial glands, being significantly upregulated toward the mid- to late secretory phases; prominent expression in the stroma detected only in the decidual cells in the late secretory phase. Thus, overall endometrial HTRA3 expression was highest in the late secretory phase, when the endometrium is prepared for maternal-trophoblast interaction. During the first trimester of pregnancy, both glandular and decidual HTRA3 expression increased further with the decidual upregulation being highly significant. The strong link between HTRA3 expression and endometrial stromal cell decidualization was further established in an in vitro model using primary endometrial stromal cells. HTRA3 was also expressed by certain trophoblast subtypes in the first-trimester placenta: strongly in the villous syncytiotrophoblast, trophoblast shell, and endovascular trophoblast and weakly in the distal portion of the trophoblast cell columns but not in villous cytotrophoblast, the proximal region of the cell columns, or interstitial trophoblast. Upregulation of HTRA3 expression in association with placental development was revealed by a significant elevation of this protein in the maternal serum during the first trimester. We thus propose that HTRA3 is a previously unrecognized factor closely associated with and potentially important for human placentation. This study established crucial groundwork for future investigations toward establishing the physiological roles of HTRA3 in human placentation.


Human Reproduction | 2011

PC6 levels in uterine lavage are closely associated with uterine receptivity and significantly lower in a subgroup of women with unexplained infertility

Sophea Heng; Natalie J. Hannan; Luk Rombauts; Lois A. Salamonsen; Guiying Nie

BACKGROUND Embryo implantation requires a healthy embryo and a receptive uterus. Uterine incompetence contributes significantly to implantation failure and infertility. To date, there are no reliable biochemical methods that can determine whether the uterus is receptive. Proprotein convertase 5/6 (PC6) is tightly regulated in the uterus and critical for receptivity and implantation; its secretory nature predicts PC6 to be secreted into the uterine cavity. The present study examines whether PC6 is detectable in uterine lavage and whether there is any correlation between secreted PC6 levels and uterine receptivity. METHODS Western blotting determined the presence of PC6 protein in uterine lavage. A sensitive and high-throughput activity assay was established and validated. This assay was applied to 103 lavages collected from different phases of the menstrual cycle from women with proven fertility or unexplained infertility. RESULTS Uterine lavage contained PC6 protein with levels paralleling enzymatic activity. PC6 levels were significantly higher in the receptive than in the non-receptive phase in fertile women, and the putative receptive phase levels in a subgroup of women with unexplained infertility were significantly lower than in the fertile counterparts. CONCLUSIONS PC6 levels in uterine lavage are significantly elevated in the luteal phase of fertile women and markedly reduced in a subgroup of women with unexplained infertility. Uterine fluid is a valuable source of material to evaluate uterine function. Detection of PC6 in uterine fluid may lead to the development of a rapid and relatively non-surgical assessment of uterine receptivity.

Collaboration


Dive into the Guiying Nie's collaboration.

Top Co-Authors

Avatar

Lois A. Salamonsen

Hudson Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Ying Li

Prince Henry's Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Harmeet Singh

Prince Henry's Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Jock K. Findlay

Hudson Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Andrew N. Stephens

Prince Henry's Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Sarah Paule

Prince Henry's Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Sophea Heng

Prince Henry's Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anne L. Hampton

Prince Henry's Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge