Guiyuan Zhou
Crops Research Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Guiyuan Zhou.
BMC Plant Biology | 2009
Xuanqiang Liang; Xiaoping Chen; Yanbin Hong; Haiyan Liu; Guiyuan Zhou; Shaoxiong Li; Baozhu Guo
BackgroundLack of sufficient molecular markers hinders current genetic research in peanuts (Arachis hypogaea L.). It is necessary to develop more molecular markers for potential use in peanut genetic research. With the development of peanut EST projects, a vast amount of available EST sequence data has been generated. These data offered an opportunity to identify SSR in ESTs by data mining.ResultsIn this study, we investigated 24,238 ESTs for the identification and development of SSR markers. In total, 881 SSRs were identified from 780 SSR-containing unique ESTs. On an average, one SSR was found per 7.3 kb of EST sequence with tri-nucleotide motifs (63.9%) being the most abundant followed by di- (32.7%), tetra- (1.7%), hexa- (1.0%) and penta-nucleotide (0.7%) repeat types. The top six motifs included AG/TC (27.7%), AAG/TTC (17.4%), AAT/TTA (11.9%), ACC/TGG (7.72%), ACT/TGA (7.26%) and AT/TA (6.3%). Based on the 780 SSR-containing ESTs, a total of 290 primer pairs were successfully designed and used for validation of the amplification and assessment of the polymorphism among 22 genotypes of cultivated peanuts and 16 accessions of wild species. The results showed that 251 primer pairs yielded amplification products, of which 26 and 221 primer pairs exhibited polymorphism among the cultivated and wild species examined, respectively. Two to four alleles were found in cultivated peanuts, while 3–8 alleles presented in wild species. The apparent broad polymorphism was further confirmed by cloning and sequencing of amplified alleles. Sequence analysis of selected amplified alleles revealed that allelic diversity could be attributed mainly to differences in repeat type and length in the microsatellite regions. In addition, a few single base mutations were observed in the microsatellite flanking regions.ConclusionThis study gives an insight into the frequency, type and distribution of peanut EST-SSRs and demonstrates successful development of EST-SSR markers in cultivated peanut. These EST-SSR markers could enrich the current resource of molecular markers for the peanut community and would be useful for qualitative and quantitative trait mapping, marker-assisted selection, and genetic diversity studies in cultivated peanut as well as related Arachis species. All of the 251 working primer pairs with names, motifs, repeat types, primer sequences, and alleles tested in cultivated and wild species are listed in Additional File 1.
Proceedings of the National Academy of Sciences of the United States of America | 2016
Xiaoping Chen; Hongjie Li; Manish K. Pandey; Qingli Yang; Xiyin Wang; Vanika Garg; Haifen Li; Xiaoyuan Chi; Dadakhalandar Doddamani; Yanbin Hong; Hari D. Upadhyaya; Hui Guo; Aamir W. Khan; Fanghe Zhu; Xiaoyan Zhang; Lijuan Pan; Gary J. Pierce; Guiyuan Zhou; Katta A. V. S. Krishnamohan; Mingna Chen; Ni Zhong; Gaurav Agarwal; Shuanzhu Li; Annapurna Chitikineni; Guo-Qiang Zhang; Shivali Sharma; Na Chen; Haiyan Liu; Pasupuleti Janila; Shaoxiong Li
Significance We present a draft genome of the peanut A-genome progenitor, Arachis duranensis, providing details on total genes present in the genome. Genome analysis suggests that the peanut lineage was affected by at least three polyploidizations since the origin of eudicots. Resequencing of synthetic Arachis tetraploids reveals extensive gene conversion since their formation by human hands. The A. duranensis genome provides a major source of candidate genes for fructification, oil biosynthesis, and allergens, expanding knowledge of understudied areas of plant biology and human health impacts of plants. This study also provides millions of structural variations that can be used as genetic markers for the development of improved peanut varieties through genomics-assisted breeding. Peanut or groundnut (Arachis hypogaea L.), a legume of South American origin, has high seed oil content (45–56%) and is a staple crop in semiarid tropical and subtropical regions, partially because of drought tolerance conferred by its geocarpic reproductive strategy. We present a draft genome of the peanut A-genome progenitor, Arachis duranensis, and 50,324 protein-coding gene models. Patterns of gene duplication suggest the peanut lineage has been affected by at least three polyploidizations since the origin of eudicots. Resequencing of synthetic Arachis tetraploids reveals extensive gene conversion in only three seed-to-seed generations since their formation by human hands, indicating that this process begins virtually immediately following polyploid formation. Expansion of some specific gene families suggests roles in the unusual subterranean fructification of Arachis. For example, the S1Fa-like transcription factor family has 126 Arachis members, in contrast to no more than five members in other examined plant species, and is more highly expressed in roots and etiolated seedlings than green leaves. The A. duranensis genome provides a major source of candidate genes for fructification, oil biosynthesis, and allergens, expanding knowledge of understudied areas of plant biology and human health impacts of plants, informing peanut genetic improvement and aiding deeper sequencing of Arachis diversity.
Agricultural Sciences in China | 2008
Yanbin Hong; Xuanqiang Liang; Xiaoping Chen; Haiyan Liu; Guiyuan Zhou; Shao-xiong Li; Shijie Wen
Abstract Molecular genetic maps of crop species can be used in a variety of ways in breeding and genomic research such as identification and mapping of genes and quantitative trait loci (QTLs) for morphological, physiological and economic traits of crop species. However, a comprehensive genetic linkage map for cultivated peanut has not yet been developed due to the extremely low frequency of DNA polymorphism in cultivated peanut. In this study, 142 recombinant inbred lines (RILs) derived from a cross between Yueyou 13 and Zhenzhuhei were used as mapping population in peanut (Arachis hypogaea L.). A total 652 pairs of genomic-SSR primer and 392 pairs of EST-SSR primer were used to detect the polymorphisms between the two parents. 141 SSR primer pairs, 127 genomic-SSR and 14 EST-SSR ones, which can be used to detect polymorphisms between the two parents, were selected to analyze the RILs population. Thus, a linkage genetic map which consists of 131 SSR loci in 20 linkage groups, with a coverage of 679 cM and an average of 6.12 cM of inter-maker distance was constructed. The putative functions of 12 EST-SSR markers located on the map were analyzed. Eleven showed homology to gene sequences deposited in GenBank. This is the first report of construction of a comprehensive genetic map with SSR markers in peanut (Arachis hypogaea L.). The map presented here will provide a genetic framework for mapping the qualitative and quantitative trait in peanut.
Peanut Science | 2009
Xuanqiang Liang; Guiyuan Zhou; Yanbin Hong; Xiaopin Chen; Haiyan Liu; Shaoxiong Li
Abstract Aflatoxin contamination in peanut is a serious and world-wide problem concerning food safety and human health. Plant-host resistance is a highly desirable tactic that can be used to manage this problem. This review summarizes research progress in peanut host resistance mechanisms to aflatoxin contamination at the Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China. Through systematic resistance evaluations, germplasm lines resistant to Aspergillus flavus invasion have been identified and two resistant cultivars were developed and released in South China. The resistance has been associated with testa wax and presence of cutin layer, active oxygen and membrane lipid peroxidation, phytoalexin accumulation, and antifungal proteins in the peanut kernels. Functional genomics will be a valuable tool to understand the comprehensive mechanisms governing the resistance pathways. In this paper we also summarized the advances made by our group in the area of genomic researc...
Frontiers in Plant Science | 2018
Qing Lu; Haifen Li; Yanbin Hong; Guo-Qiang Zhang; Shijie Wen; Xingyu Li; Guiyuan Zhou; Shaoxiong Li; Hao Liu; Haiyan Liu; Zhong-Jian Liu; Rajeev K. Varshney; Xiaoping Chen; Xuanqiang Liang
[This corrects the article DOI: 10.3389/fpls.2018.00604.].
Frontiers in Plant Science | 2018
Qing Lu; Haifen Li; Yanbin Hong; Guo-Qiang Zhang; Shijie Wen; Xingyu Li; Guiyuan Zhou; Shaoxiong Li; Hao Liu; Haiyan Liu; Zhong-Jian Liu; Rajeev K. Varshney; Xiaoping Chen; Xuanqiang Liang
Peanut (Arachis hypogaea L.), an important leguminous crop, is widely cultivated in tropical and subtropical regions. Peanut is an allotetraploid, having A and B subgenomes that maybe have originated in its diploid progenitors Arachis duranensis (A-genome) and Arachis ipaensis (B-genome), respectively. We previously sequenced the former and here present the draft genome of the latter, expanding our knowledge of the unique biology of Arachis. The assembled genome of A. ipaensis is ~1.39 Gb with 39,704 predicted protein-encoding genes. A gene family analysis revealed that the FAR1 family may be involved in regulating peanut special fruit development. Genomic evolutionary analyses estimated that the two progenitors diverged ~3.3 million years ago and suggested that A. ipaensis experienced a whole-genome duplication event after the divergence of Glycine max. We identified a set of disease resistance-related genes and candidate genes for biological nitrogen fixation. In particular, two and four homologous genes that may be involved in the regulation of nodule development were obtained from A. ipaensis and A. duranensis, respectively. We outline a comprehensive network involved in drought adaptation. Additionally, we analyzed the metabolic pathways involved in oil biosynthesis and found genes related to fatty acid and triacylglycerol synthesis. Importantly, three new FAD2 homologous genes were identified from A. ipaensis and one was completely homologous at the amino acid level with FAD2 from A. hypogaea. The availability of the A. ipaensis and A. duranensis genomic assemblies will advance our knowledge of the peanut genome.
African Journal of Agricultural Research | 2012
Yanbin Hong; Guiyuan Zhou; Shaoxiong Li; Haiyan Liu; Xiaoping Chen; Shijie Wen; Xuanqiang Liang
Data of 12 peanut varieties were analyzed with a view to investigate the relationship between root traits and aboveground traits. Results showed that root biomass was positively correlated with aboveground biomass and total biomass at three stages of growth and development. Root activity at different growth stages were significantly and positively correlated with yield at the mature stage. However, a significant negative correlation was observed between yield and root/shoot ratio at the mature stage. It was concluded that the root system possessed a close relationship with aboveground parts, and keeping the root activity of peanut at the mature stage was essential for achieving high and stable yield.
BMC Plant Biology | 2010
Yanbin Hong; Xiaoping Chen; Xuanqiang Liang; Haiyan Liu; Guiyuan Zhou; Shaoxiong Li; Shijie Wen; C. Corley Holbrook; Baozhu Guo
Plant Biotechnology Journal | 2013
Xiaoping Chen; Wei Zhu; Sarwar Azam; Heying Li; Fanghe Zhu; Haifen Li; Yanbin Hong; Haiyan Liu; Erhua Zhang; Hong Wu; Shanlin Yu; Guiyuan Zhou; Shaoxiong Li; Ni Zhong; Shijie Wen; Xingyu Li; S. J. Knapp; Peggy Ozias-Akins; Rajeev K. Varshney; Xuanqiang Liang
Plant Breeding | 2012
Xiaoping Chen; Yanbin Hong; Erhua Zhang; Haiyan Liu; Guiyuan Zhou; Shaoxiong Li; Fanghe Zhu; Baozhu Guo; Jiujiang Yu; Xuanqiang Liang