Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Guiyun Yan is active.

Publication


Featured researches published by Guiyun Yan.


Malaria Journal | 2006

Topography and malaria transmission heterogeneity in western Kenya highlands: prospects for focal vector control

Andrew K. Githeko; John M. Ayisi; Peter Odada; Francis Atieli; Bryson Ndenga; John I. Githure; Guiyun Yan

BackgroundRecent resurgence of malaria in the highlands of Western Kenya has called for a more comprehensive understanding of the previously neglected complex highland vector ecology. Besides other drivers of malaria epidemiology, topography is likely to have a major effect on spatial vector and parasite distribution. The aim of this study was to determine the effects of topography on malaria spatial vector distribution and parasite prevalence.MethodologyIndoor resting adult malaria vectors and blood parasites were collected in three villages along a 4 km transect originating from the valley bottom and ending at the hilltop for 13 months. Members of the Anopheles gambiae complex were identified by PCR. Blood parasites were collected from children 6–13 years old and densities categorized by site of home location and age of the children.ResultsNinety eight percent (98%) of An. gambiae s.s. and (99%) Anopheles funestus were collected in houses located at the edge of the valley bottom, whereas 1% of An. gambiae s.s. were collected at mid hill and at the hilltop respectively. No An. funestus were collected at the hilltop. Malaria prevalence was 68% at the valley bottom, 40.2% at mid hill and 26.7% at the hilltop. Children aged six years and living at the edge of the valley bottom had an annual geometric mean number of 66.1 trophozoites for every 200 white blood cells, while those living at mid-hill had a mean of 84.8, and those living at hilltop had 199.5 trophozoites.ConclusionMalaria transmission in this area is mainly confined to the valley bottom. Effective vector control could be targeted at the foci. However, the few vectors observed at mid-hill maintained a relatively high prevalence rate. The higher variability in blood parasite densities and their low correlation with age in children living at the hilltop suggests a lower stability of transmission than at the mid-hill and valley bottom.


Tropical Medicine & International Health | 2007

Molecular analysis of chloroquine resistance in Plasmodium falciparum in Yunnan Province, China

Zhaoqing Yang; Zaixin Zhang; Xiaodong Sun; Wenlin Wan; Long Cui; Xiang Zhang; Daibin Zhong; Guiyun Yan; Liwang Cui

Resistance of Plasmodium falciparum to chloroquine (CQ) is determined by the mutation at K76T of the P. falciparum chloroquine resistance transporter (pfcrt) gene and modified by other mutations in this gene and in the P. falciparum multidrug resistance 1 (pfmdr1) gene. To determine the extent of polymorphisms in these genes in field P. falciparum isolates from Yunnan province of China, we genotyped the pfcrt codon 76, pfmdr1 codons 86 and 1246. Our results showed that although CQ has been withdrawn from treating falciparum malaria for over two decades, 90.3% of the parasites still carried the pfcrt K76T mutation. In contrast, mutations at pfmdr1 codons 86 and 1246 were rare. Sequencing analysis of the pfcrt gene in 34 parasite field isolates revealed CVIET at positions 72–76 as the major type, consistent with the theory of Southeast Asian origin of CQ resistance in the parasite. In addition, two novel pfcrt haplotypes (75D/144Y/220A and 75E/144Y/220A) were identified. Real‐time polymerase chain reaction was used to determine pfmdr1 gene amplification, which is associated with mefloquine resistance. Our result indicated that in agreement with that mefloquine has not been used in this area, most (>90%) of the parasites had one pfmdr1 copy. Genotyping at two hypervariable loci showed relatively low levels of genetic diversity of the parasite population. Meanwhile, 28.4% of cases were found to contain mixed clones, which favour genetic recombination. Furthermore, despite a unique history of antimalarial drugs in Yunnan, its geographical connections with three malarious countries facilitate gene flow among parasite populations and evolution of novel drug‐resistant genotypes. Therefore, continuous surveillance of drug resistance in this area is necessary for timely adjustment of local drug policies and more effective malaria control.


Parasites & Vectors | 2011

Evaluation of two methods of estimating larval habitat productivity in western Kenya highlands

Eliningaya J. Kweka; Guofa Zhou; Ming-Chieh Lee; Thomas M Gilbreath; Franklin W. Mosha; Stephen Munga; Andrew K. Githeko; Guiyun Yan

BackgroundMalaria vector intervention and control programs require reliable and accurate information about vector abundance and their seasonal distribution. The availability of reliable information on the spatial and temporal productivity of larval vector habitats can improve targeting of larval control interventions and our understanding of local malaria transmission and epidemics. The main objective of this study was to evaluate two methods of estimating larval habitat productivity in the western Kenyan highlands, the aerial sampler and the emergence trap.MethodsThe study was conducted during the dry and rainy seasons in 2008, 2009 and 2010. Aerial samplers and emergence traps were set up for sixty days in each season in three habitat types: drainage ditches, natural swamps, and abandoned goldmines. Aerial samplers and emergence traps were set up in eleven places in each habitat type. The success of each in estimating habitat productivity was assessed according to method, habitat type, and season. The effect of other factors including algae cover, grass cover, habitat depth and width, and habitat water volume on species productivity was analysed using stepwise logistic regressionResultsHabitat productivity estimates obtained by the two sampling methods differed significantly for all species except for An. implexus. For for An. gambiae s.l. and An. funestus, aerial samplers performed better, 21.5 and 14.6 folds, than emergence trap respectively, while the emergence trap was shown to be more efficient for culicine species. Seasonality had a significant influence on the productivity of all species monitored. Dry season was most productive season. Overall, drainage ditches had significantly higher productivity in all seasons compared to other habitat types. Algae cover, debris, chlorophyll-a, and habitat depth and size had significant influence with respect to species.ConclusionThese findings suggest that the aerial sampler is the better of the two methods for estimating the productivity of An. gambiae s.l. and An. funestus in the western Kenya highlands and possibly other malaria endemic parts of Africa. This method has proven to be a useful tool for monitoring malaria vector populations and for control program design, and provides useful means for determining the most suitable sites for targeted interventions.


Malaria Journal | 2013

Performance of two rapid diagnostic tests for malaria diagnosis at the China-Myanmar border area

Juan Yan; Nana Li; Xu Wei; Peipei Li; Zhenjun Zhao; Lili Wang; Siying Li; Xiaomei Li; Ying Wang; Shuying Li; Zhaoqing Yang; Bin Zheng; Guofa Zhou; Guiyun Yan; Liwang Cui; Yaming Cao; Qi Fan

BackgroundRapid diagnostic tests (RDTs) have become an essential tool in the contemporary malaria control and management programmes in the world. This study aims to evaluate the performance of two commonly used RDTs for malaria diagnosis in the China-Myanmar border area.MethodsA total 606 febrile patients in the China-Myanmar border were recruited to this study and were diagnosed for malaria infections by microscopy, two RDTs tests (Pf/Pan device, and Pv/Pf device) and nested PCR.ResultsMalaria parasites were found in 143 patients by microscopy, of which 51, 73, and 19 were Plasmodium falciparum, Plasmodium vivax and P. falciparum/P. vivax mixed infections, respectively. Compared to microscopy, the sensitivity of the Pf/Pan device was 88.6% for P. falciparum and 69.9% for P. vivax with the specificity of 90.4%. For a subset of 350 patients, the sensitivity of the Pf/Pan device and Pv/Pf device for detection of P. falciparum was 87.5% and 91.7%, respectively; and for detection of P. vivax was 72.0% and 73.8%, respectively. The specificity of the Pf/Pan device and Pv/Pf device was 94.3% and 96.5%, respectively. Nested PCR detected malaria parasites in 174 of 606 samples, of which 67, 79, two and 26 were P. falciparum, P. vivax, P. ovale and P. falciparum/P. vivax mixed infections, respectively. Compared to nested PCR, all other methods had sensitivity below 80%, suggesting that a significant number of cases were missed.ConclusionsCompared to PCR, both microscopy and RDTs had lower sensitivities. RDTs had similar performance to microscopy for P. falciparum diagnosis, but performed worse for P. vivax diagnosis. Other RDT products should be selected with higher sensitivity (and good specificity) for both P. falciparum and P. vivax diagnosis.


Parasites & Vectors | 2012

Effects of co-habitation between Anopheles gambiae s.s. and Culex quinquefasciatus aquatic stages on life history traits

Eliningaya J. Kweka; Goufa Zhou; Leila B Beilhe; Amruta Dixit; Yaw Afrane; Thomas M Gilbreath; Stephen Munga; Mramba Nyindo; Andrew K. Githeko; Guiyun Yan

BackgroundThe effective measures for the control of malaria and filariasis vectors can be achieved by targeting immature stages of anopheline and culicine mosquitoes in productive habitat. To design this strategy, the mechanisms (like biotic interactions with conspecifc and heterospecific larvae) regulating mosquito aquatic stages survivorship, development time and the size of emerging adults should be understood. This study explored the effect of co-habitation between An. gambiae s.s. and Cx. quinquefasciatus on different life history traits of both species under different densities and constant food supply in the habitats of the same size under semi-natural conditions.MethodsExperiments were set up with three combinations; Cx. quinquefasciatus alone (single species treatment), An. gambiae s.s. alone (single species treatment); and An. gambiae s.s. with Cx. quiquefasciatus (co-habitation treatment) in different densities in semi field situation.ResultsThe effect of co-habitation of An. gambiae s.s. and Cx. quinquefasciatus was found to principally affect three parameters. The wing-lengths (a proxy measure of body size) of An. gambiae s.s. in co-habitation treatments were significantly shorter in both females and males than in An. gambiae s.s single species treatments. In Cx. quinquefasciatus, no significant differences in wing-length were observed between the single species and co-habitation treatments. Daily survival rates were not significantly different between co-habitation and single species treatments for both An. gambiae s.s. and Cx. quinquefasciatus. Developmental time was found to be significantly different with single species treatments developing better than co-habitation treatments. Sex ratio was found to be significantly different from the proportion of 0.5 among single and co-habitation treatments species at different densities. Single species treatments had more males than females emerging while in co-habitation treatments more females emerged than males. In this study, there was no significant competitive survival advantage in co-habitation.ConclusionThese results suggest that co-habitation of An. gambiae s.s. and Cx. quinquefasciatus in semi-natural conditions affect mostly An. gambiae s.s. body size. Hence, more has to be understood on the effects of co-habitation of An. gambiae s.s. and Cx. quinquefasciatus in a natural ecology and its possible consequences in malaria and filariasis epidemiology.


Journal of Insect Behavior | 2008

Conspecific Sharing of Breeding Sites by Anopheline Female Mosquitoes (Diptera: Culicidae) Inferred from Microsatellite Markers

Hong Chen; Noboru Minakawa; Liwang Cui; Guiyun Yan

The number of Anopheles gambiae and Anopheles arabiensis females that used each of the 33 sampled breeding sites in west Kenya was estimated by microsatellite markers and related statistics to test the hypothesis that conspecific females share aquatic sites. Totally, 166 An. gambiae and 168 An. arabiensis larvae were identified and were genotyped. The mean number of larvae per breeding site was 8.3 for An. gambiae and 8.4 for An. arabiensis. The likelihood method estimated that, for An. gambiae, the mean number of females that would have laid eggs per breeding site was 5.2 and ranged from 2 to 9, and for An. arabiensis, the mean was 5.0 with a range of 2–10. The clustering method estimated that the mean number of females laying eggs per breeding site was 6.8 for An. gambiae. The results provide molecular evidence that females of one or both species share breeding sites.


Parasites & Vectors | 2016

Comparative evaluation of the efficiency of the BG-Sentinel trap, CDC light trap and Mosquito-oviposition trap for the surveillance of vector mosquitoes

Yiji Li; Xinghua Su; Guofa Zhou; Hong Zhang; Santhosh Puthiyakunnon; Shufen Shuai; Songwu Cai; Jinbao Gu; Xiaohong Zhou; Guiyun Yan; Xiao-Guang Chen

BackgroundThe surveillance of vector mosquitoes is important for the control of mosquito-borne diseases. To identify a suitable surveillance tool for the adult dengue vector Aedes albopictus, the efficacy of the BG-Sentinel trap, CDC light trap and Mosquito-oviposition trap (MOT) on the capture of vector mosquitoes were comparatively evaluated in this study.MethodsThe capture efficiencies of the BG-Sentinel trap, CDC light trap and Mosquito-oviposition trap for common vector mosquitoes were tested in a laboratory setting, through the release-recapture method, and at two field sites of Guangzhou, China from June 2013 to May 2014. The captured mosquitoes were counted, species identified and compared among the three traps on the basis of species.ResultsIn the release-recapture experiments in a laboratory setting, the BG-Sentinel trap caught significantly more Aedes albopictus and Culex quinquefasciatus than the CDC light trap and Mosquito-ovitrap, except for Anopheles sinensis. The BG-Sentinel trap had a higher efficacy in capturing female rather than male Ae. albopictus and Cx. quinquefasciatus, but the capture in CDC light traps displayed no significant differences. In the field trial, BG-Sentinel traps collected more Aedes albopictus than CDC light traps and MOTs collected in both urban and suburban areas. The BG-Sentinel trap was more sensitive for monitoring the population density of Aedes albopictus than the CDC light trap and MOT during the peak months of the year 2013. However, on an average, CDC light traps captured significantly more Cx. quinquefasciatus than BG-Sentinel traps. The population dynamics of Cx. quinquefasciatus displayed a significant seasonal variation, with the lowest numbers in the middle of the year.ConclusionsThis study indicates that the BG-Sentinel trap is more effective than the commonly used CDC light trap and MOT in sampling adult Aedes albopictus and Culex quinquefasciatus. We recommend its use in the surveillance of dengue vector mosquitoes in China.


Archive | 2016

Secondary Malaria Vectors of Sub-Saharan Africa: Threat to Malaria Elimination on the Continent?

Yaw Afrane; Mariangela Bonizzoni; Guiyun Yan

Secondary vectors of malaria include those anopheline species that are known to play minor part in malaria transmission. Primary vectors of malaria in Africa are Anopheles gambiae s.s, Anopheles coluzzii, Anopheles arabiensis, Anopheles funestus, Anopheles moucheti and Anopheles nili, while Anopheles rivolorum, Anopheles pharoensis, Anopheles ziemanni, among others are secondary vectors. They are recognized for their importance in malaria transmission, as they may help to augment or extend the malaria transmission period and potentially sustain malaria transmission after the main indoor resting and indoor biting vectors have been reduced by vector control measures such as indoor residual spraying or Long-lasting insecticidal nets (LLINs). Thus, the terminology “secondary” versus “primary” vector is fluid and forged by ecological conditions and malaria control strategies. Most secondary vectors are outdoor resting and outdoor biting are thus, not taken care of in the current control methods. High use of insecticides for vector control in Africa, climate change, unprecedented land use changes in Africa are some of the factors that could influence the conversion of secondary vectors to become main vectors in Africa. This chapter examines the role of secondary vectors in malaria transmission and the possibility of them becoming main vectors in future.


Archive | 2011

Malaria Transmission in the African Highlands in a Changing Climate Situation: Perspective from Kenyan Highlands

Yaw Afrane; Andrew K. Githeko; Guiyun Yan

Vector-borne diseases are among the diseases that have been linked with climate change (IPCC. 2001). Malaria is probably the deadliest climate sensitive vector-borne disease (Githeko et al. 2000). About 90% of the 300-500 million cases of the reported malaria cases worldwide come from Africa. In the late 80s to the 90s, malaria epidemics occurred frequently in western Kenya highlands, often taking the population by surprise. The epidemics were caused by Plasmodium falciparum and transmitted by Anopheles gambiae and Anopheles funestus. Epidemics were associated with high morbidity and mortality in all age groups, with prevalence of the disease rising from about 20% to about 60%. The case mortality in functional health facilities were estimated at about 7.5% (Githeko and Ndegwa 2001). The malaria transmission system involves a complex interaction between humans, mosquitoes, the plasmodium parasite, climate and the physical environment. Warming of the climate is expected to lead to latitudinal and altitudinal temperature increase. The temporal and spatial changes in temperature, precipitation and humidity that are expected to occur under different climate change scenarios will affect the biology and ecology of vectors and intermediate hosts and consequently the risk of disease transmission. The risk increases because, although arthropods can regulate their internal temperature by changing their behaviour, they cannot do so physiologically and are thus critically dependent on climate for their survival and development (Lindsay and Birley 1996). Temperature is inversely related to altitude, thus the high-elevation areas in Africa, or highlands, generally exhibit low ambient temperature, which restricts the development of vectors and parasites. Because malaria transmission rate is temperature-dependent, any factor that alters the temperature in the highland would reduce the duration of parasite development, larval development and increase the mosquito biting rates, and subsequently increase malaria transmission in the highlands.


Malaria Journal | 2014

Nested PCR detection of malaria directly using blood filter paper samples from epidemiological surveys

Peipei Li; Zhenjun Zhao; Ying Wang; Hua Xing; Daniel M. Parker; Zhaoqing Yang; Elizabeth Baum; Wenli Li; Jetsumon Sattabongkot; Jeeraphat Sirichaisinthop; Shuying Li; Guiyun Yan; Liwang Cui; Qi Fan

Collaboration


Dive into the Guiyun Yan's collaboration.

Top Co-Authors

Avatar

Guofa Zhou

University of California

View shared research outputs
Top Co-Authors

Avatar

Andrew K. Githeko

Kenya Medical Research Institute

View shared research outputs
Top Co-Authors

Avatar

Yaw Afrane

Kenya Medical Research Institute

View shared research outputs
Top Co-Authors

Avatar

Liwang Cui

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Zhaoqing Yang

Kunming Medical University

View shared research outputs
Top Co-Authors

Avatar

Qi Fan

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Kingsley Badu

Kenya Medical Research Institute

View shared research outputs
Top Co-Authors

Avatar

Stephen Munga

Kenya Medical Research Institute

View shared research outputs
Top Co-Authors

Avatar

Ying Wang

Third Military Medical University

View shared research outputs
Researchain Logo
Decentralizing Knowledge