Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Guiyun Zhang is active.

Publication


Featured researches published by Guiyun Zhang.


Journal of Cellular Biochemistry | 2006

Decorin regulates assembly of collagen fibrils and acquisition of biomechanical properties during tendon development

Guiyun Zhang; Yoichi Ezura; Inna Chervoneva; Paul S. Robinson; David P. Beason; Ehren T. Carine; Louis J. Soslowsky; Renato V. Iozzo; David E. Birk

Tendon function involves the development of an organized hierarchy of collagen fibrils. Small leucine‐rich proteoglycans have been implicated in the regulation of fibrillogenesis and decorin is the prototypic member of this family. Decorin‐deficient mice demonstrate altered fibril structure and mechanical function in mature skin and tail tendons. However, the developmental role(s) of decorin needs to be elucidated. To define these role(s) during tendon development, tendons (flexor digitorum longus) were analyzed ultrastructurally from postnatal day 10 to 90. Decorin‐deficient tendons developed abnormal, irregularly contoured fibrils. Finite mixture modeling estimated that the mature tendon was a three‐subpopulation mixture of fibrils with characteristic diameter ranges. During development, in each subpopulation the mean diameter was consistently larger in mutant mice. Also, diameter distributions and the percentage of fibrils in each subpopulation were altered. Biomechanical analyses demonstrated that mature decorin‐deficient tendons had significantly reduced strength and stiffness; however, there was no reduction in immature tendons. Expression of decorin and biglycan, a closely related family member, was analyzed during development. Decorin increased with development while biglycan decreased. Spatially, both had a comparable localization throughout the tendon. Biglycan expression increased substantially in decorin‐deficient tendons suggesting a potential functional compensation. The accumulation of structural defects during fibril growth, a period associated with decorin expression and low biglycan expression, may be the cause of compromised mechanical function in the absence of decorin. Our findings indicate that decorin is a key regulatory molecule and that the temporal switch from biglycan to decorin is an important event in the coordinate regulation of fibrillogenesis and tendon development. J. Cell. Biochem.


Journal of Biological Chemistry | 2009

Genetic Evidence for the Coordinated Regulation of Collagen Fibrillogenesis in the Cornea by Decorin and Biglycan

Guiyun Zhang; Shoujun Chen; Silvia Goldoni; Bennett W. Calder; Holly C. Simpson; Rick T. Owens; David J. McQuillan; Marian F. Young; Renato V. Iozzo; David E. Birk

Decorin and biglycan are class I small leucine-rich proteoglycans (SLRPs) involved in regulation of collagen fibril and matrix assembly. We hypothesize that tissue-specific matrix assembly, such as in the cornea, requires a coordinate regulation involving multiple SLRPs. To this end, we investigated the expression of decorin and biglycan in the cornea of mice deficient in either SLRP gene and in double-mutant mice. Decorin and biglycan exhibited overlapping spatial expression patterns throughout the corneal stroma with differential temporal expression. Whereas decorin was expressed at relatively high levels in all developmental stages, biglycan expression was high early, decreased during development, and was present at very low levels in the mature cornea. Ultrastructural analyses demonstrated comparable fibril structure in the decorin- and biglycan-null corneas compared with wild-type controls. We found a compensatory up-regulation of biglycan gene expression in the decorin-deficient mice, but not the reverse. Notably, the corneas of compound decorin/biglycan-null mice showed severe disruption in fibril structure and organization, especially affecting the posterior corneal regions, corroborating the idea that biglycan compensates for the loss of decorin. Fibrillogenesis assays using recombinant decorin and biglycan confirmed a functional compensation, with both having similar effects at high SLRP/collagen ratios. However, at low ratios decorin was a more efficient regulator. The use of proteoglycan or protein core yielded comparable results. These findings provide firm genetic evidence for an interaction of decorin and biglycan during corneal development and further suggest that decorin has a primary role in regulating fibril assembly, a function that can be fine-tuned by biglycan during early development.


Journal of Biological Chemistry | 2009

Type XIV Collagen Regulates Fibrillogenesis: PREMATURE COLLAGEN FIBRIL GROWTH AND TISSUE DYSFUNCTION IN NULL MICE*

Heather L. Ansorge; Xianmin Meng; Guiyun Zhang; Guido Veit; Mei Sun; John F. Klement; David P. Beason; Louis J. Soslowsky; Manuel Koch; David E. Birk

Type XIV collagen is a fibril-associated collagen with an interrupted triple helix. This collagen interacts with the fibril surface and has been implicated as a regulator of fibrillogenesis; however, a specific role has not been elucidated. Functional roles for type XIV collagen were defined utilizing a new type XIV collagen-deficient mouse line. This line was produced using a conventional targeted knock-out approach. Col14a1(–/–) mice were devoid of type XIV collagen, whereas heterozygous mice had reduced synthesis. Both mutant Col14a1 genotypes were viable with a grossly normal phenotype; however, mature skin exhibited altered mechanical properties. Prior to evaluating tendon fibrillogenesis in type XIV collagen-deficient mice, the developmental expression patterns were analyzed in wild-type flexor digitorum longus (FDL) tendons. Analyses of mRNA and protein expression indicated tissue-specific temporal expression that was associated with the early stages in fibrillogenesis. Ultrastructural analyses of wild-type and null tendons demonstrated premature fibril growth and larger fibril diameters in tendons from null mice at postnatal day 4 (P4). However, fibril structure in mature tendons was normal. Biomechanical studies established a direct structure/function relationship with reduced strength in P7-null tendons. However, the biomechanical properties in P60 tendons were comparable in null and wild-type mice. Our results indicate a regulatory function for type XIV collagen in early stages of collagen fibrillogenesis with tissue differences.


Journal of Cellular Biochemistry | 2002

The roles of types XII and XIV collagen in fibrillogenesis and matrix assembly in the developing cornea.

Blanche Young; Guiyun Zhang; Manuel Koch; David E. Birk

Corneal transparency depends on the architecture of the stromal extracellular matrix, including fibril diameter, packing, and lamellar organization. The roles of collagen types XII and XIV in regulation of corneal fibrillogenesis and development were examined. The temporal and spatial expression patterns were analyzed using semi‐quantitative RT‐PCR, in situ hybridization, Western analysis, and immunohistochemistry. Expression of types XII and XIV collagens in cornea development demonstrated that type XII collagen mRNA levels are constant throughout development (10D‐adult) while type XIV mRNA is highest in early embryonic stages (10D–14D), decreasing significantly by hatching. The spatial expression patterns of types XII and XIV collagens demonstrated a homogeneous signal in the stroma for type XIV collagen, while type XII collagen shows segregation to the sub‐epithelial and sub‐endothelial stroma during embryonic stages. The type XII collagen in the anterior stroma was an epithelial product during development while fibroblasts contributed in the adult. Type XIV collagen expression was highest early in development and was absent by hatching. Both types XII and type XIV collagen have different isoforms generated by alternative splicing that may alter specific interactions important in fibrillogenesis, fibril–fibril interactions, and higher order matrix assembly. Analysis of these splice variants demonstrated that the long XII mRNA levels were constant throughout development, while the short XII NC3 mRNA levels peaked early (12D) followed by a decrease. Both type XIV collagen NC1 splice variants are highest during early stages (12D–14D) decreasing by 17D of development. These data suggest type XII collagen may have a role in development of stromal architecture and maintenance of fibril organization, while type XIV collagen may have a role in regulation of fibrillogenesis. J. Cell. Biochem. 87: 208–220, 2002.


Journal of Biological Chemistry | 2011

Regulation of collagen fibril nucleation and initial fibril assembly involves coordinate interactions with collagens V and XI In developing tendon

Richard J. Wenstrup; Simone M. Smith; Jane B. Florer; Guiyun Zhang; David P. Beason; Robert E. Seegmiller; Louis J. Soslowsky; David E. Birk

Collagens V and XI comprise a single regulatory type of fibril-forming collagen with multiple isoforms. Both co-assemble with collagen I or II to form heterotypic fibrils and have been implicated in regulation of fibril assembly. The objective of this study was to determine the roles of collagens V and XI in the regulation of tendon fibrillogenesis. Flexor digitorum longus tendons from a haplo-insufficient collagen V mouse model of classic Ehlers Danlos syndrome (EDS) had decreased biomechanical stiffness compared with controls consistent with joint laxity in EDS patients. However, fibril structure was relatively normal, an unexpected finding given the altered fibrils observed in dermis and cornea from this model. This suggested roles for other related molecules, i.e. collagen XI, and compound Col5a1+/−,Col11a1+/− tendons had altered fibril structures, supporting a role for collagen XI. To further evaluate this, transcript expression was analyzed in wild type tendons. During development (E18-P10) both collagen V and XI were comparably expressed; however, collagen V predominated in mature (P30) tendons. The collagens had a similar expression pattern. Tendons with altered collagen V and/or XI expression (Col5a1+/−; Col11a1+/−; Col5a1+/−,Col11a1+/−; Col11a1−/−; Col5a1+/−,Col11a1−/−) were analyzed at E18. All genotypes demonstrated a reduced fibril number and altered structure. This phenotype was more severe with a reduction in collagen XI. However, the absence of collagen XI with a reduction in collagen V was associated with the most severe fibril phenotype. The data demonstrate coordinate roles for collagens V and XI in the regulation of fibril nucleation and assembly during tendon development.


Developmental Dynamics | 2006

Collagen fibril assembly during postnatal development and dysfunctional regulation in the lumican‐deficient murine cornea

Shukti Chakravarti; Guiyun Zhang; Inna Chervoneva; L. Roberts; David E. Birk

The transparent cornea is the outer barrier of the eye and is its major refractive surface. Development of a functional cornea requires a postnatal maturation phase involving development, growth and organization of the stromal extracellular matrix. Lumican, a leucine‐rich proteoglycan, is implicated in regulating assembly of collagen fibrils and the highly organized extracellular matrix essential for corneal transparency. We investigated the regulatory role(s) of lumican in fibril assembly during postnatal corneal development using wild type (Lum+/+) and lumican‐null (Lum−/−) mice. In Lum+/+ mice, a regular architecture of small‐diameter fibrils is achieved in the anterior stroma by postnatal day 10 (P10), while the posterior stroma takes longer to reach this developmental maturity. Thus, the anterior and the posterior stroma follow distinct developmental timelines and may be under different regulatory mechanisms. In Lum−/− mice, it is the posterior stroma where abnormal lateral associations of fibrils and thicker fibrils with irregular contours are evident as early as P10. In contrast, the anterior stroma is minimally perturbed by the absence of lumican. In Lum+/+ mice, lumican is expressed throughout the developing stroma at P10, with strong expression limited to the posterior stroma in the adult. Therefore, the posterior stroma, which is most vulnerable to lumican‐deficiency, demonstrates an early developmental defect in fibril structure and architecture in the Lum−/− mouse. These defects underlie the reported increased light scattering and opacity detectable in the adult. Our findings emphasize the early regulation of collagen structure by lumican during postnatal development of the cornea. Developmental Dynamics 235:2493–2506, 2006.


Matrix Biology | 2011

Dysfunctional tendon collagen fibrillogenesis in collagen VI null mice.

Yayoi Izu; Heather L. Ansorge; Guiyun Zhang; Louis J. Soslowsky; Paolo Bonaldo; David E. Birk

Tendons are composed of fibroblasts and collagen fibrils. The fibrils are organized uniaxially and grouped together into fibers. Collagen VI is a non-fibrillar collagen expressed in developing and adult tendons. Human collagen VI mutations result in muscular dystrophy, joint hyperlaxity and contractures. The purpose of this study is to determine the functional roles of collagen VI in tendon matrix assembly. During tendon development, collagen VI was expressed throughout the extracellular matrix, but enriched around fibroblasts and their processes. To analyze the functional roles of collagen VI a mouse model with a targeted inactivation of Col6a1 gene was utilized. Ultrastructural analysis of Col6a1-/- versus wild type tendons demonstrated disorganized extracellular micro-domains and associated collagen fibers in the Col6a1-/- tendon. In Col6a1-/- tendons, fibril structure and diameter distribution were abnormal compared to wild type controls. The diameter distributions were shifted significantly toward the smaller diameters in Col6a1-/- tendons compared to controls. An analysis of fibril density (number/μm(2)) demonstrated a ~2.5 fold increase in the Col6a1-/- versus wild type tendons. In addition, the fibril arrangement and structure were aberrant in the peri-cellular regions of Col6a1-/- tendons with frequent very large fibrils and twisted fibrils observed restricted to this region. The biomechanical properties were analyzed in mature tendons. A significant decrease in cross-sectional area was observed. The percent relaxation, maximum load, maximum stress, stiffness and modulus were analyzed and Col6a1-/- tendons demonstrated a significant reduction in maximum load and stiffness compared to wild type tendons. An increase in matrix metalloproteinase activity was suggested in the absence of collagen VI. This suggests alterations in tenocyte expression due to disruption of cell-matrix interactions. The changes in expression may result in alterations in the peri-cellular environment. In addition, the absence of collagen VI may alter the sequestering of regulatory molecules such as leucine rich proteoglycans. These changes would result in dysfunctional regulation of tendon fibrillogenesis indirectly mediated by collagen VI.


Journal of Anatomy | 2003

Differential expression of type XII collagen in developing chicken metatarsal tendons

Guiyun Zhang; Blanche Young; David E. Birk

Type XII collagen is a fibril‐associated collagen with multiple functional domains. The purpose of this work was to determine its role in regulating tendon matrix assembly. The temporal and spatial expression patterns of both collagen and mRNA were analysed in developing chicken metatarsal tendons using immunofluorescence microscopy, in situ hybridization and real‐time quantitative PCR. Temporally, type XII collagen was present during all stages of development (day 14‐hatch). However, spatially, type XII collagen expression shifted from the entire tendon at day 14, when the tendon is immature and fascicles are not well developed, to the interfacial matrix (endotendinium) associated with developing fascicles. This shift was obvious beginning at day 17, becoming prominent at day 19. Associated with this shift was a gradual decrease in type XII collagen reactivity in the tendon proper (non‐sheath). By hatching, the reactivity was sequestered almost exclusively to the sheaths with some reactivity remaining at the fibroblast–matrix interface within the fascicle. In situ hybridization indicated that fibroblasts in the tendon expressed type XII collagen mRNA homogeneously at day 14. However, by hatching, when the tendon matures, type XII collagen is restricted primarily to the sheath cells. Quantitative PCR analyses, of NC3 splice variants, demonstrated highest expression levels for the short splice variant mRNA at days 14–17, followed by a significant decrease at day 19 with levels remaining constant to adult. Long variant mRNA expression was highest at day 14 then decreased and was constant from day 17 to adult. These changing patterns may be related to the spatial shift in type XII collagen expression to the sheaths. Differential temporal and spatial expression patterns indicate that type XII collagen functions to integrate the developing tendon matrices and fascicles into a functional unit.


Matrix Biology | 2014

Collagen V localizes to pericellular sites during tendon collagen fibrillogenesis.

Simone M. Smith; Guiyun Zhang; David E. Birk

During tendon development collagen fibrillogenesis occurs in extracellular micro-domains defined by the tenocytes. This permits cellular regulation of the extracellular steps involved in the tissue-specific matrix assembly required for function. The hypothesis tested here is that collagen V associates with the tenocyte surface where it functions in regulation of collagen assembly and cell-directed fibril deposition. The in vitro and in vivo data demonstrate that collagen V is a quantitatively minor component of the tendon. It is preferentially localized on the tenocyte surface as distinct foci in tendons and in cell culture. In vitro data indicate that this interaction with the tenocyte is not HSPG GAG-dependent. Collagen V is present as the mature, processed form, is absent from the media, and is a significant part of the detergent-insoluble cell layer, presumably as part of a membrane-associated complex. In contrast, procollagen I is not efficiently processed and is found predominantly in the culture media. Our data suggest that the regulatory role of collagen V requires collagen V to occupy a different cellular niche from the structural collagen I. In monolayer cultures, the conversion to the tissue form of collagen V and its deposition with the cell layer suggest efficient engagement of procollagen V with pericellular receptors and processing enzymes. The secretion of collagen I into the media and inefficient processing of procollagen I suggest reduced accessibility to these pericellular molecules due to disengagement from the cell surface. This all points to differential spatial localization of collagen V as a mechanism to optimize its regulatory roles during the cell-surface directed steps in tendon collagen fibril assembly.


Cell and Tissue Research | 2016

Forelimb contractures and abnormal tendon collagen fibrillogenesis in fibulin-4 null mice

Dessislava Markova; Te-Cheng Pan; Rui-Zhu Zhang; Guiyun Zhang; Takako Sasaki; Machiko Arita; David E. Birk

Fibulin-4 is an extracellular matrix glycoprotein essential for elastic fiber formation. Mice deficient in fibulin-4 die perinatally because of severe pulmonary and vascular defects associated with the lack of intact elastic fibers. Patients with fibulin-4 mutations demonstrate similar defects, and a significant number die shortly after birth or in early childhood from cardiopulmonary failure. The patients also demonstrate skeletal and other systemic connective tissue abnormalities, including joint laxity and flexion contractures of the wrist. A fibulin-4 null mouse strain was generated and used to analyze the roles of fibulin-4 in tendon fibrillogenesis. This mouse model displayed bilateral forelimb contractures, in addition to pulmonary and cardiovascular defects. The forelimb and hindlimb tendons exhibited disruption in collagen fibrillogenesis in the absence of fibulin-4 as analyzed by transmission electron microscopy. Fewer fibrils were assembled, and fibrils were disorganized compared with wild-type controls. The organization of developing tenocytes and compartmentalization of the extracellular space was also disrupted. Fibulin-4 was co-localized with fibrillin-1 and fibrillin-2 in limb tendons by using immunofluorescence microscopy. Thus, fibulin-4 seems to play a role in regulating tendon collagen fibrillogenesis, in addition to its essential function in elastogenesis.

Collaboration


Dive into the Guiyun Zhang's collaboration.

Top Co-Authors

Avatar

David E. Birk

University of South Florida

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David P. Beason

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Blanche Young

Thomas Jefferson University

View shared research outputs
Top Co-Authors

Avatar

H.C. Simpson

Thomas Jefferson University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Inna Chervoneva

Thomas Jefferson University

View shared research outputs
Top Co-Authors

Avatar

Renato V. Iozzo

Thomas Jefferson University

View shared research outputs
Top Co-Authors

Avatar

Simone M. Smith

University of South Florida

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge