Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Guizhi Yang is active.

Publication


Featured researches published by Guizhi Yang.


Nature Medicine | 2015

High-throughput screening using patient-derived tumor xenografts to predict clinical trial drug response

Hui Gao; Joshua Korn; Stephane Ferretti; John E. Monahan; Youzhen Wang; Mallika Singh; Chao Zhang; Christian Schnell; Guizhi Yang; Yun Zhang; O Alejandro Balbin; Stéphanie Barbe; Hongbo Cai; Fergal Casey; Susmita Chatterjee; Derek Y. Chiang; Shannon Chuai; Shawn M Cogan; Scott D Collins; Ernesta Dammassa; Nicolas Ebel; Millicent Embry; John Green; Audrey Kauffmann; Colleen Kowal; Rebecca J. Leary; Joseph Lehar; Ying Liang; Alice Loo; Edward Lorenzana

Profiling candidate therapeutics with limited cancer models during preclinical development hinders predictions of clinical efficacy and identifying factors that underlie heterogeneous patient responses for patient-selection strategies. We established ∼1,000 patient-derived tumor xenograft models (PDXs) with a diverse set of driver mutations. With these PDXs, we performed in vivo compound screens using a 1 × 1 × 1 experimental design (PDX clinical trial or PCT) to assess the population responses to 62 treatments across six indications. We demonstrate both the reproducibility and the clinical translatability of this approach by identifying associations between a genotype and drug response, and established mechanisms of resistance. In addition, our results suggest that PCTs may represent a more accurate approach than cell line models for assessing the clinical potential of some therapeutic modalities. We therefore propose that this experimental paradigm could potentially improve preclinical evaluation of treatment modalities and enhance our ability to predict clinical trial responses.


Cell Cycle | 2009

Single-vector inducible lentiviral RNAi system for oncology target validation

Dmitri Wiederschain; Susan Wee; Lin Chen; Alice Loo; Guizhi Yang; Alan Huang; Yan Chen; Giordano Caponigro; Yung Mae Yao; Christoph Lengauer; William R. Sellers; John D. Benson

The use of RNA interference (RNAi) has enabled loss-of-function studies in mammalian cancer cells and has hence become critical for identifying and validating cancer drug targets. Current transient siRNA and stable shRNA systems, however, have limited utility in accurately assessing the cancer dependency due to their short-lived effects and limited in vivo utility, respectively. In this study, a single-vector lentiviral, Tet-inducible shRNA system (pLKO-Tet-On) was generated to allow for the rapid generation of multiple stable cell lines with regulatable shRNA expression. We demonstrate the advantages and versatility of this system by targeting two polycomb group proteins, Bmi-1 and Mel-18, in a number of cancer cell lines. Our data show that pLKO-Tet-On-mediated knockdown is tightly regulated by the inducer tetracycline and its derivative, doxycycline, in a concentration- and time-dependent manner. Furthermore, target gene expression is fully restored upon withdrawal of the inducing agent. An additional, 17 distinct gene products have been targeted by inducible shRNAs with robust regulation in all cases. Importantly, we functionally validate the ability of the pLKO-Tet-On vector to reversibly silence targeted transcripts in vivo. The versatile and robust inducible lentiviral RNAi system reported herein can therefore serve as a powerful tool to rapidly reveal tumor cell dependence.


Nature | 2016

Allosteric inhibition of SHP2 phosphatase inhibits cancers driven by receptor tyrosine kinases

Yan Chen; Matthew J. LaMarche; Ho Man Chan; Peter Fekkes; Garcia-Fortanet J; Acker Mg; Brandon Antonakos; Christine Hiu-Tung Chen; Zhouliang Chen; Vesselina G. Cooke; Zhan Deng; Fei F; Brant Firestone; Michelle Fodor; Cary Fridrich; Hui Gao; Denise Grunenfelder; Hao Hx; Jacob J; Samuel Ho; Kathy Hsiao; Zhao B. Kang; Rajesh Karki; Mitsunori Kato; Jay Larrow; La Bonte Lr; Francois Lenoir; Gang Liu; Shumei Liu; Dyuti Majumdar

The non-receptor protein tyrosine phosphatase SHP2, encoded by PTPN11, has an important role in signal transduction downstream of growth factor receptor signalling and was the first reported oncogenic tyrosine phosphatase. Activating mutations of SHP2 have been associated with developmental pathologies such as Noonan syndrome and are found in multiple cancer types, including leukaemia, lung and breast cancer and neuroblastoma. SHP2 is ubiquitously expressed and regulates cell survival and proliferation primarily through activation of the RAS–ERK signalling pathway. It is also a key mediator of the programmed cell death 1 (PD-1) and B- and T-lymphocyte attenuator (BTLA) immune checkpoint pathways. Reduction of SHP2 activity suppresses tumour cell growth and is a potential target of cancer therapy. Here we report the discovery of a highly potent (IC50 = 0.071 μM), selective and orally bioavailable small-molecule SHP2 inhibitor, SHP099, that stabilizes SHP2 in an auto-inhibited conformation. SHP099 concurrently binds to the interface of the N-terminal SH2, C-terminal SH2, and protein tyrosine phosphatase domains, thus inhibiting SHP2 activity through an allosteric mechanism. SHP099 suppresses RAS–ERK signalling to inhibit the proliferation of receptor-tyrosine-kinase-driven human cancer cells in vitro and is efficacious in mouse tumour xenograft models. Together, these data demonstrate that pharmacological inhibition of SHP2 is a valid therapeutic approach for the treatment of cancers.


Science | 2016

Disordered methionine metabolism in MTAP/CDKN2A-deleted cancers leads to dependence on PRMT5.

Konstantinos Mavrakis; E. Robert McDonald; Michael R. Schlabach; Eric Billy; Gregory R. Hoffman; Antoine deWeck; David A. Ruddy; Kavitha Venkatesan; Jianjun Yu; Gregg McAllister; Mark Stump; Rosalie deBeaumont; Samuel Ho; Yingzi Yue; Yue Liu; Yan Yan-Neale; Guizhi Yang; Fallon Lin; Hong Yin; Hui Gao; D. Randal Kipp; Songping Zhao; Joshua T. McNamara; Elizabeth R. Sprague; Bing Zheng; Ying Lin; Young Shin Cho; Justin Gu; Kenneth Crawford; David N. Ciccone

Tumors put in a vulnerable position Cancer cells often display alterations in metabolism that help fuel their growth. Such metabolic “rewiring” may also work against the cancer cells, however, by creating new vulnerabilities that can be exploited therapeutically. A variety of human tumors show changes in methionine metabolism caused by loss of the gene coding for 5-methylthioadenosine phosphorylase (MTAP). Mavrakis et al. and Kryukov et al. found that the loss of MTAP renders cancer cell lines sensitive to growth inhibition by compounds that suppress the activity of a specific arginine methyltransferase called PRMT5. Conceivably, drugs that inhibit PRMT5 activity could be developed into a tailored therapy for MTAP-deficient tumors. Science, this issue pp. 1208 and 1214 Tumors cope with a genomic change by rewiring their metabolism, but this makes them more susceptible to certain drugs. 5-Methylthioadenosine phosphorylase (MTAP) is a key enzyme in the methionine salvage pathway. The MTAP gene is frequently deleted in human cancers because of its chromosomal proximity to the tumor suppressor gene CDKN2A. By interrogating data from a large-scale short hairpin RNA–mediated screen across 390 cancer cell line models, we found that the viability of MTAP-deficient cancer cells is impaired by depletion of the protein arginine methyltransferase PRMT5. MTAP-deleted cells accumulate the metabolite methylthioadenosine (MTA), which we found to inhibit PRMT5 methyltransferase activity. Deletion of MTAP in MTAP-proficient cells rendered them sensitive to PRMT5 depletion. Conversely, reconstitution of MTAP in an MTAP-deficient cell line rescued PRMT5 dependence. Thus, MTA accumulation in MTAP–deleted cancers creates a hypomorphic PRMT5 state that is selectively sensitized toward further PRMT5 inhibition. Inhibitors of PRMT5 that leverage this dysregulated metabolic state merit further investigation as a potential therapy for MTAP/CDKN2A-deleted tumors.


Nature | 2017

The metabolic function of cyclin D3–CDK6 kinase in cancer cell survival

Haizhen Wang; Brandon N. Nicolay; Joel M. Chick; Xueliang Gao; Yan Geng; Hong Ren; Hui Gao; Guizhi Yang; Juliet Williams; Jan M. Suski; Mark A. Keibler; Ewa Sicinska; Ulrike Gerdemann; W. Nicholas Haining; Thomas M. Roberts; Kornelia Polyak; Steven P. Gygi; Nicholas J. Dyson; Piotr Sicinski

D-type cyclins (D1, D2 and D3) and their associated cyclin-dependent kinases (CDK4 and CDK6) are components of the core cell cycle machinery that drives cell proliferation. Inhibitors of CDK4 and CDK6 are currently being tested in clinical trials for patients with several cancer types, with promising results. Here, using human cancer cells and patient-derived xenografts in mice, we show that the cyclin D3–CDK6 kinase phosphorylates and inhibits the catalytic activity of two key enzymes in the glycolytic pathway, 6-phosphofructokinase and pyruvate kinase M2. This re-directs the glycolytic intermediates into the pentose phosphate (PPP) and serine pathways. Inhibition of cyclin D3–CDK6 in tumour cells reduces flow through the PPP and serine pathways, thereby depleting the antioxidants NADPH and glutathione. This, in turn, increases the levels of reactive oxygen species and causes apoptosis of tumour cells. The pro-survival function of cyclin D-associated kinase operates in tumours expressing high levels of cyclin D3–CDK6 complexes. We propose that measuring the levels of cyclin D3–CDK6 in human cancers might help to identify tumour subsets that undergo cell death and tumour regression upon inhibition of CDK4 and CDK6. Cyclin D3–CDK6, through its ability to link cell cycle and cell metabolism, represents a particularly powerful oncoprotein that affects cancer cells at several levels, and this property can be exploited for anti-cancer therapy.


mAbs | 2014

Multivalent nanobodies targeting death receptor 5 elicit superior tumor cell killing through efficient caspase induction

Heather Huet; Joseph D. Growney; Jennifer A. Johnson; Jing Li; Sanela Bilic; Lance Ostrom; Mohammad Zafari; Colleen Kowal; Guizhi Yang; Axelle Royo; Michael Rugaard Jensen; Bruno Dombrecht; Kris Meerschaert; Joost Kolkman; Karen Cromie; Rebecca Mosher; Hui Gao; Alwin Schuller; Randi Isaacs; William R. Sellers; Seth Ettenberg

Multiple therapeutic agonists of death receptor 5 (DR5) have been developed and are under clinical evaluation. Although these agonists demonstrate significant anti-tumor activity in preclinical models, the clinical efficacy in human cancer patients has been notably disappointing. One possible explanation might be that the current classes of therapeutic molecules are not sufficiently potent to elicit significant response in patients, particularly for dimeric antibody agonists that require secondary cross-linking via Fcγ receptors expressed on immune cells to achieve optimal clustering of DR5. To overcome this limitation, a novel multivalent Nanobody approach was taken with the goal of generating a significantly more potent DR5 agonist. In the present study, we show that trivalent DR5 targeting Nanobodies mimic the activity of natural ligand, and furthermore, increasing the valency of domains to tetramer and pentamer markedly increased potency of cell killing on tumor cells, with pentamers being more potent than tetramers in vitro. Increased potency was attributed to faster kinetics of death-inducing signaling complex assembly and caspase-8 and caspase-3 activation. In vivo, multivalent Nanobody molecules elicited superior anti-tumor activity compared to a conventional DR5 agonist antibody, including the ability to induce tumor regression in an insensitive patient-derived primary pancreatic tumor model. Furthermore, complete responses to Nanobody treatment were obtained in up to 50% of patient-derived primary pancreatic and colon tumor models, suggesting that multivalent DR5 Nanobodies may represent a significant new therapeutic modality for targeting death receptor signaling.


Journal of Biological Chemistry | 2014

Identification of mixed lineage leukemia 1(MLL1) protein as a coactivator of heat shock factor 1(HSF1) protein in response to heat shock protein 90 (HSP90) inhibition.

Yaoyu Chen; Jinyun Chen; Jianjun Yu; Guizhi Yang; Emilia Temple; Fred Harbinski; Hui Gao; Christopher Wilson; Raymond Pagliarini; Wenlai Zhou

Background: The efficacy of HSP90 inhibitors may be limited by HSF1-mediated feedback mechanisms. Results: MLL1 regulates HSF1-target genes upon HSP90 inhibition, and MLL1 depletion shows a striking combination effect in human cancer. Conclusion: MLL1 functions as a coactivator of HSF1 upon HSP90 inhibition. Significance: This is the first report of MLL1 as a coactivator of HSF1 upon HSP90 inhibition. Heat shock protein 90 (HSP90) inhibition inhibits cancer cell proliferation through depleting client oncoproteins and shutting down multiple oncogenic pathways. Therefore, it is an attractive strategy for targeting human cancers. Several HSP90 inhibitors, including AUY922 and STA9090, show promising effects in clinical trials. However, the efficacy of HSP90 inhibitors may be limited by heat shock factor 1 (HSF1)-mediated feedback mechanisms. Here, we identify, through an siRNA screen, that the histone H3 lysine 4 methyltransferase MLL1 functions as a coactivator of HSF1 in response to HSP90 inhibition. MLL1 is recruited to the promoters of HSF1 target genes and regulates their expression in response to HSP90 inhibition. In addition, a striking combination effect is observed when MLL1 depletion is combined with HSP90 inhibition in various human cancer cell lines and tumor models. Thus, targeting MLL1 may block a HSF1-mediated feedback mechanism induced by HSP90 inhibition and provide a new avenue to enhance HSP90 inhibitor activity in human cancers.


Molecular Cancer Therapeutics | 2009

Abstract B27: Correlation between TNFα and LCL161 anti‐tumor activity in patient derived xenograft models of human cancer

Brant Firestone; Colleen Conway; Guizhi Yang; Hui Gao; Dale Porter; Joanna Slisz; Dan He; Rebecca Mosher; John E. Monahan; Christopher Sean Straub; Michael Morrissey; Yung-Mae Yao; Leigh Zawel

LCL161, a small molecule antagonist of inhibitor of apoptosis proteins (IAPs), induces TNF ‐mediated apoptosis in a subset of tumor cell lines including the MDA‐MB‐231 breast cancer line. To investigate the in vivo activity of LCL161, MDA‐MB‐231 tumor bearing mice were treated with a once weekly oral dose. We observed anti‐tumor activity that was associated with pharmacodynamic responses including degradation of CIAP1 and induction of cleaved caspase 3. The loss of CIAP1, specifically the E3 ligase activity of this protein, has been shown to directly impact the stability of a number of client proteins including NIK (NF‐κB inducing kinase), Mad1 (MAX‐binding protein), and others. Gene expression analysis on LCL161 treated MDA‐MB‐231 tumors revealed a striking upregulation of NF‐κB regulated target genes. These data were further supported by the observation that TNFα, a direct target of NF‐κB, was induced in LCL161 treated MDAMB‐231 tumor lysates. To explore whether TNFα expression levels could be used to predict single agent efficacy in a more clinically relevant context, a series of human primary tumor xenografts were profiled for baseline TNFα mRNA levels and evaluated for response to LCL161 in vivo. We observed that tumors with the highest TNFα expression levels showed the greatest sensitivity to LCL161. These studies demonstrate an essential role of the NF‐κB pathway in IAP antagonist anti‐tumor activity. Ongoing efforts focus on delineating the contribution of the canonical and non‐canonical NF‐κB pathways to efficacy and on leveraging this mechanism for LCL161 patient selection. Citation Information: Mol Cancer Ther 2009;8(12 Suppl):B27.


Cancer Research | 2010

Abstract 138: Therapeutic targeting of inhibitor of apoptosis proteins

Leigh Zawel; Christopher Sean Straub; Brant Firestone; John Sullivan; Kymberly Levine; Dale Porter; Colleen Conway; Guizhi Yang; Hui Gao; Dan He; Joanna Slisz; Michael Morrissey; John E. Monahan; Rebecca Mosher; Frank Stegmeier; Feng He; Ly Luu Pham; Fan Yang; Julian Chen; Tim Ramsey; Megan Yao; Stephen Fawell

Inhibitor of Apoptosis Proteins (IAP) proteins negatively regulate cell death through a variety of mechanisms. The prototypical IAP family member XIAP binds and inhibits the catalytic activity of caspases 3/7 and caspase 9 via the BIR2-linker region and BIR3 domains, respectively. CIAP1 and CIAP2 do not directly inhibit caspases but negatively regulate death receptor mediated apoptosis via intrinsic E3 ligase activity towards RIPK and NIK among other client proteins. IAP inhibitors (IAPi) are low molecular weight compounds that mimic Smac and bind to the IAP binding motif in the BIR3 domain of XIAP, CIAP1 and CIAP2. Smac mimetics induce apoptosis as a single agent in a subset of tumor cell lines in vitro. Cell death is preceded by the rapid proteosome-mediated degradation of CIAP1 followed by activation of both canonical and non-canonical NFKB pathway activation, TNF production and robust activation of caspase 3/7 activity. Multiple nodes in the NFKB signaling pathway were interrogated following IAPi treatment in sensitive and resistant cancer cells to delineate the basis for differential responses. Although canonical and non-canonical NFKB signaling was activated in both sensitive and resistant cells, TNF was induced only in the former. LCL161 is a second generation orally bioavailable IAPi with nM affinity for XIAP, CIAP1, CIAP2. Consistent with above, tumor cell lines with high baseline TNF levels are predisposed to IAPi sensitivity. Curiously, addition of exogenous TNF can sensitize many otherwise resistant tumor cell lines, but not normal cells, to LCL161. We undertook an unbiased study of the entire TNF super family to determine what other TNF-like cytokines could sensitize tumor cells to LCL161- induced cell death. In addition to TNF, several cytokines synergized with LCL161 and in each case RIPK appeared to play a central role. LCL161 showed potent single agent activity in the MDA-MB-231 tumor xenograft model. In vivo efficacy was accompanied by a series of tumor pharmacodynamic readouts including CIAP1 elimination, activation of an NFKB transcriptional program and caspase activation. In primary patient derived human tumor xenograft models of triple negative breast cancer and NSCLC, LCL161 had a range of responses from no effect to tumor stasis. Consistent with in vitro mechanistic studies, tumor models which were sensitive had high basal TNF levels. LCL161 lacked single agent activity in the A2058 melanoma model but significantly enhanced the anti-tumor activity of paclitaxel. The LCL161-Taxol combination triggered synergistic activation of caspases and near complete regressions in xenograft tumors. Clinical trials in man with LCL161 are ongoing in patients with solid tumors. A range of pharmacodynamic readouts have been observed which are consistent with preclinical observations. These findings show promise for IAP inhibitor therapy in humans. Citation Format: {Authors}. {Abstract title} [abstract]. In: Proceedings of the 101st Annual Meeting of the American Association for Cancer Research; 2010 Apr 17-21; Washington, DC. Philadelphia (PA): AACR; Cancer Res 2010;70(8 Suppl):Abstract nr 138.


Cancer Research | 2017

Abstract 2084: Conformational activation and allosteric inhibition of SHP2 in RTK-driven cancers

Michael G. Acker; Ying-Nan P. Chen; Matthew J. LaMarche; Ho Man Chan; Peter Fekkes; Jorge Garcia-Fortanet; Jonathan R. LaRochelle; Brandon Antonakos; C. H. Chen; Zhuoliang Chen; Vesselina G. Cooke; Jason R. Dobson; Zhan Deng; Fei Feng; Brant Firestone; Michelle Fodor; Cary Fridrich; Hui Gao; Huai-Xiang Hao; Jaison Jacob; Samuel Ho; Kathy Hsiao; Zhao B. Kang; Rajesh Karki; Mitsunori Kato; Jay Larrow; Laura R. La Bonte; Gang Liu; Shumei Liu; Dyuti Majumdar

The non-receptor protein tyrosine phosphatase (PTP) SHP2 is an important component of RTK signaling in response to growth factor stimulus and sits just upstream of the RAS-MAPK signaling cascade. The first oncogenic phosphatase to be identified, SHP2 is dysregulated in multiple human diseases including the developmental disorders Noonan and Leopard syndromes, as well as leukemia, lung cancer and neuroblastoma where aberrant activity of SHP2 leads to uncontrolled MAPK signaling. Cancer-associated activating mutations in SHP2 impart an “auto-on” state of the enzyme, boosting basal activity by shifting the equilibrium away from the auto-inhibited state. Reduction of SHP2 activity through genetic knockdown suppresses tumor growth, validating SHP2 as a target for cancer therapy. SHP099, a recently reported potent and selective allosteric inhibitor of SHP2, stabilizes the auto-inhibited form of SHP2 through interactions with the N-terminal SH2 and C-terminal PTP domains of the protein. SHP099 suppresses MAPK signaling in RTK amplified cancers resulting in suppressed proliferation in vitro and inhibition of tumor growth in mouse tumor xenograft models. Together, these data demonstrate the therapeutic potential of SHP2 inhibition in the treatment of cancer and other RAS/MAPK-linked diseases. Citation Format: Michael G. Acker, Ying-Nan P. Chen, Matthew J. LaMarche, Ho Man Chan, Peter Fekkes, Jorge Garcia-Fortanet, Jonathan R. LaRochelle, Brandon Antonakos, Christine Hiu-Tung Chen, Zhuoliang Chen, Vesselina G. Cooke, Jason R. Dobson, Zhan Deng, Fei Feng, Brant Firestone, Michelle Fodor, Cary Fridrich, Hui Gao, Huai-Xiang Hao, Jaison Jacob, Samuel Ho, Kathy Hsiao, Zhao B. Kang, Rajesh Karki, Mitsunori Kato, Jay Larrow, Laura R. La Bonte, Gang Liu, Shumei Liu, Dyuti Majumdar, Matthew J. Meyer, Mark Palermo, Minying Pu, Edmund Price, Subarna Shakya, Michael D. Shultz, Kavitha Venkatesan, Ping Wang, Markus Warmuth, Sarah Williams, Guizhi Yang, Jing Yuan, Ji-Hu Zhang, Ping Zhu, Stephen C. Blacklow, Timothy Ramsey, Nicholas J. Keen, William R. Sellers, Travis Stams, Pascal D. Fortin. Conformational activation and allosteric inhibition of SHP2 in RTK-driven cancers [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2017; 2017 Apr 1-5; Washington, DC. Philadelphia (PA): AACR; Cancer Res 2017;77(13 Suppl):Abstract nr 2084. doi:10.1158/1538-7445.AM2017-2084

Collaboration


Dive into the Guizhi Yang's collaboration.

Researchain Logo
Decentralizing Knowledge