Gul Civelekoglu-Scholey
University of California, Davis
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Gul Civelekoglu-Scholey.
Journal of Cell Biology | 2006
Xiaoyu Pan; Guangshuo Ou; Gul Civelekoglu-Scholey; Oliver E. Blacque; Nicholas F. Endres; Li Tao; Alex Mogilner; Michel R. Leroux; Ronald D. Vale; Jonathan M. Scholey
The assembly and function of cilia on Caenorhabditis elegans neurons depends on the action of two kinesin-2 motors, heterotrimeric kinesin-II and homodimeric OSM-3–kinesin, which cooperate to move the same intraflagellar transport (IFT) particles along microtubule (MT) doublets. Using competitive in vitro MT gliding assays, we show that purified kinesin-II and OSM-3 cooperate to generate movement similar to that seen along the cilium in the absence of any additional regulatory factors. Quantitative modeling suggests that this could reflect an alternating action mechanism, in which the motors take turns to move along MTs, or a mechanical competition, in which the motors function in a concerted fashion to move along MTs with the slow motor exerting drag on the fast motor and vice versa. In vivo transport assays performed in Bardet-Biedl syndrome (BBS) protein and IFT motor mutants favor a mechanical competition model for motor coordination in which the IFT motors exert a BBS protein–dependent tension on IFT particles, which controls the IFT pathway that builds the cilium foundation.
Nature Cell Biology | 2011
Limin Hao; Melanie Thein; Ingrid Brust-Mascher; Gul Civelekoglu-Scholey; Yun Lu; Seyda Acar; Bram Prevo; Shai Shaham; Jonathan M. Scholey
Sensory cilia are assembled and maintained by kinesin-2-dependent intraflagellar transport (IFT). We investigated whether two Caenorhabditis elegans α - and β-tubulin isotypes, identified through mutants that lack their cilium distal segments, are delivered to their assembly sites by IFT. Mutations in conserved residues in both tubulins destabilize distal singlet microtubules. One isotype, TBB-4, assembles into microtubules at the tips of the axoneme core and distal segments, where the microtubule tip tracker EB1 is found, and localizes all along the cilium, whereas the other, TBA-5, concentrates in distal singlets. IFT assays, fluorescence recovery after photobleaching analysis and modelling indicate that the continual transport of sub-stoichiometric numbers of these tubulin subunits by the IFT machinery can maintain sensory cilia at their steady-state length.
Journal of Cell Biology | 2010
Gul Civelekoglu-Scholey; Li Tao; Ingrid Brust-Mascher; Roy Wollman; Jonathan M. Scholey
The lamin-B nuclear envelope stabilizes spindle microtubules by keeping the competitive motility of opposing-force kinesins in check.
Journal of Cell Biology | 2007
Dhanya K. Cheerambathur; Gul Civelekoglu-Scholey; Ingrid Brust-Mascher; Patrizia Sommi; Alex Mogilner; Jonathan M. Scholey
Anaphase B in Drosophila embryos is initiated by the inhibition of microtubule (MT) depolymerization at spindle poles, which allows outwardly sliding interpolar (ip) MTs to drive pole–pole separation. Using fluorescence recovery after photobleaching, we observed that MTs throughout the preanaphase B spindle are very dynamic and display complete recovery of fluorescence, but during anaphase B, MTs proximal to the poles stabilize and therefore display lower recovery than those elsewhere. Fluorescence microscopy of the MT tip tracker EB1 revealed that growing MT plus ends localize throughout the preanaphase B spindle but concentrate in the overlap region of interpolar MTs (ipMTs) at anaphase B onset. None of these changes occurred in the presence of nondegradable cyclin B. Modeling suggests that they depend on the establishment of a spatial gradient of MT plus-end catastrophe frequencies, decreasing toward the equator. The resulting redistribution of ipMT plus ends to the overlap zone, together with the suppression of minus-end depolymerization at the poles, could constitute a mechanical switch that initiates spindle elongation.
Cellular and Molecular Life Sciences | 2010
Gul Civelekoglu-Scholey; Jonathan M. Scholey
The mitotic spindle uses dynamic microtubules and mitotic motors to generate the pico-Newton scale forces that are needed to drive the mitotic movements that underlie chromosome capture, alignment and segregation. Here, we consider the biophysical and molecular basis of force-generation for chromosome movements in the spindle, and, with reference to the Drosophila embryo mitotic spindle, we briefly discuss how mathematical modeling can complement experimental analysis to illuminate the mechanisms of chromosome-to-pole motility during anaphase A and spindle elongation during anaphase B.
Molecular Systems Biology | 2008
Roy Wollman; Gul Civelekoglu-Scholey; Jonathan M. Scholey; Alex Mogilner
The mitotic spindle is a complex macromolecular machine that coordinates accurate chromosome segregation. The spindle accomplishes its function using forces generated by microtubules (MTs) and multiple molecular motors, but how these forces are integrated remains unclear, since the temporal activation profiles and the mechanical characteristics of the relevant motors are largely unknown. Here, we developed a computational search algorithm that uses experimental measurements to ‘reverse engineer’ molecular mechanical machines. Our algorithm uses measurements of length time series for wild‐type and experimentally perturbed spindles to identify mechanistic models for coordination of the mitotic force generators in Drosophila embryo spindles. The search eliminated thousands of possible models and identified six distinct strategies for MT–motor integration that agree with available data. Many features of these six predicted strategies are conserved, including a persistent kinesin‐5‐driven sliding filament mechanism combined with the anaphase B‐specific inhibition of a kinesin‐13 MT depolymerase on spindle poles. Such conserved features allow predictions of force–velocity characteristics and activation–deactivation profiles of key mitotic motors. Identified differences among the six predicted strategies regarding the mechanisms of prometaphase and anaphase spindle elongation suggest future experiments.
Journal of Cell Biology | 2008
Dhanya K. Cheerambathur; Ingrid Brust-Mascher; Gul Civelekoglu-Scholey; Jonathan M. Scholey
The dynamic behavior of homotetrameric kinesin-5 during mitosis is poorly understood. Kinesin-5 may function only by binding, cross-linking, and sliding adjacent spindle microtubules (MTs), or, alternatively, it may bind to a stable “spindle matrix” to generate mitotic movements. We created transgenic Drosophila melanogaster expressing fluorescent kinesin-5, KLP61F-GFP, in a klp61f mutant background, where it rescues mitosis and viability. KLP61F-GFP localizes to interpolar MT bundles, half spindles, and asters, and is enriched around spindle poles. In fluorescence recovery after photobleaching experiments, KLP61F-GFP displays dynamic mobility similar to tubulin, which is inconsistent with a substantial static pool of kinesin-5. The data conform to a reaction–diffusion model in which most KLP61F is bound to spindle MTs, with the remainder diffusing freely. KLP61F appears to transiently bind MTs, moving short distances along them before detaching. Thus, kinesin-5 motors can function by cross-linking and sliding adjacent spindle MTs without the need for a static spindle matrix.
Journal of Cell Biology | 2013
Haifeng Wang; Ingrid Brust-Mascher; Gul Civelekoglu-Scholey; Jonathan M. Scholey
Patronin counteracts KLP10A activity at spindle poles to stabilize microtubule minus ends and induce spindle elongation during anaphase B.
Journal of Cell Biology | 2013
Gul Civelekoglu-Scholey; Bin He; Muyao Shen; Xiaohu Wan; Emanuele Roscioli; Brent Bowden; Daniela Cimini
A computational model of kinetochore dynamics suggests that differences in the distribution of polar ejection forces at the periphery and in the middle of PtK1 cell spindles underlie the observed position-dependence of metaphase chromosome behavior.
Interface Focus | 2014
Gul Civelekoglu-Scholey; Daniela Cimini
Mitosis is the process by which the genome is segregated to form two identical daughter cells during cell division. The process of cell division is essential to the maintenance of every form of life. However, a detailed quantitative understanding of mitosis has been difficult owing to the complexity of the process. Indeed, it has been long recognized that, because of the complexity of the molecules involved, their dynamics and their properties, the mitotic events that mediate the segregation of the genome into daughter nuclei cannot be fully understood without the contribution of mathematical/quantitative modelling. Here, we provide an overview of mitosis and describe the dynamic and mechanical properties of the mitotic apparatus. We then discuss several quantitative models that emerged in the past decades and made an impact on our understanding of specific aspects of mitosis, including the motility of the chromosomes within the mitotic spindle during metaphase and anaphase, the maintenance of spindle length during metaphase and the switch to spindle elongation that occurs during anaphase.