Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gunnar Krueger is active.

Publication


Featured researches published by Gunnar Krueger.


Journal of Magnetic Resonance Imaging | 2008

The Alzheimer's Disease Neuroimaging Initiative (ADNI): MRI methods

Clifford R. Jack; Matt A. Bernstein; Nick C. Fox; Paul M. Thompson; Gene E. Alexander; Danielle Harvey; Bret Borowski; Paula J. Britson; Jennifer L. Whitwell; Chadwick P. Ward; Anders M. Dale; Joel P. Felmlee; Jeffrey L. Gunter; Derek L. G. Hill; Ronald J. Killiany; Norbert Schuff; Sabrina Fox-Bosetti; Chen Lin; Colin Studholme; Charles DeCarli; Gunnar Krueger; Heidi A. Ward; Gregory J. Metzger; Katherine T. Scott; Richard Philip Mallozzi; Daniel James Blezek; Joshua R. Levy; Josef Phillip Debbins; Adam S. Fleisher; Marilyn S. Albert

The Alzheimers Disease Neuroimaging Initiative (ADNI) is a longitudinal multisite observational study of healthy elders, mild cognitive impairment (MCI), and Alzheimers disease. Magnetic resonance imaging (MRI), (18F)‐fluorodeoxyglucose positron emission tomography (FDG PET), urine serum, and cerebrospinal fluid (CSF) biomarkers, as well as clinical/psychometric assessments are acquiredat multiple time points. All data will be cross‐linked and made available to the general scientific community. The purpose of this report is to describe the MRI methods employed in ADNI. The ADNI MRI core established specifications thatguided protocol development. A major effort was devoted toevaluating 3D T1‐weighted sequences for morphometric analyses. Several options for this sequence were optimized for the relevant manufacturer platforms and then compared in a reduced‐scale clinical trial. The protocol selected for the ADNI study includes: back‐to‐back 3D magnetization prepared rapid gradient echo (MP‐RAGE) scans; B1‐calibration scans when applicable; and an axial proton density‐T2 dual contrast (i.e., echo) fast spin echo/turbo spin echo (FSE/TSE) for pathology detection. ADNI MRI methods seek to maximize scientific utility while minimizing the burden placed on participants. The approach taken in ADNI to standardization across sites and platforms of the MRI protocol, postacquisition corrections, and phantom‐based monitoring of all scanners could be used as a model for other multisite trials. J. Magn. Reson. Imaging 2008.


NeuroImage | 2005

Comparison of physiological noise at 1.5 T, 3 T and 7 T and optimization of fMRI acquisition parameters

Christina Triantafyllou; Richard D. Hoge; Gunnar Krueger; Christopher J. Wiggins; Andreas Potthast; Graham C. Wiggins; Lawrence L. Wald

Previous studies have shown that under some conditions, noise fluctuations in an fMRI time-course are dominated by physiological modulations of the image intensity with secondary contributions from thermal image noise and that these two sources scale differently with signal intensity, susceptibility weighting (TE) and field strength. The SNR of the fMRI time-course was found to be near its asymptotic limit for moderate spatial resolution measurements at 3 T with only marginal gains expected from acquisition at higher field strengths. In this study, we investigate the amplitude of image intensity fluctuations in the fMRI time-course at magnetic field strengths of 1.5 T, 3 T, and 7 T as a function of image resolution, flip angle and TE. The time-course SNR was a similar function of the image SNR regardless of whether the image SNR was modulated by flip angle, image resolution, or field strength. For spatial resolutions typical of those currently used in fMRI (e.g., 3 x 3 x 3 mm(3)), increases in image SNR obtained from 7 T acquisition produced only modest increases in time-course SNR. At this spatial resolution, the ratio of physiological noise to thermal image noise was 0.61, 0.89, and 2.23 for 1.5 T, 3 T, and 7 T. At a resolution of 1 x 1 x 3 mm(3), however, the physiological to thermal noise ratio was 0.34, 0.57, and 0.91 for 1.5 T, 3 T and 7 T for TE near T2*. Thus, by reducing the signal strength using higher image resolution, the ratio of physiologic to image noise could be reduced to a regime where increased sensitivity afforded by higher field strength still translated to improved SNR in the fMRI time-series.


NeuroImage | 2010

MP2RAGE, a self bias-field corrected sequence for improved segmentation and T1-mapping at high field.

José P. Marques; Tobias Kober; Gunnar Krueger; Wietske van der Zwaag; Pierre-Francois Van de Moortele; Rolf Gruetter

The large spatial inhomogeneity in transmit B(1) field (B(1)(+)) observable in human MR images at high static magnetic fields (B(0)) severely impairs image quality. To overcome this effect in brain T(1)-weighted images, the MPRAGE sequence was modified to generate two different images at different inversion times, MP2RAGE. By combining the two images in a novel fashion, it was possible to create T(1)-weighted images where the result image was free of proton density contrast, T(2) contrast, reception bias field, and, to first order, transmit field inhomogeneity. MP2RAGE sequence parameters were optimized using Bloch equations to maximize contrast-to-noise ratio per unit of time between brain tissues and minimize the effect of B(1)(+) variations through space. Images of high anatomical quality and excellent brain tissue differentiation suitable for applications such as segmentation and voxel-based morphometry were obtained at 3 and 7 T. From such T(1)-weighted images, acquired within 12 min, high-resolution 3D T(1) maps were routinely calculated at 7 T with sub-millimeter voxel resolution (0.65-0.85 mm isotropic). T(1) maps were validated in phantom experiments. In humans, the T(1) values obtained at 7 T were 1.15+/-0.06 s for white matter (WM) and 1.92+/-0.16 s for grey matter (GM), in good agreement with literature values obtained at lower spatial resolution. At 3 T, where whole-brain acquisitions with 1 mm isotropic voxels were acquired in 8 min, the T(1) values obtained (0.81+/-0.03 s for WM and 1.35+/-0.05 for GM) were once again found to be in very good agreement with values in the literature.


Magnetic Resonance in Medicine | 2009

MR Spectroscopy of the Human Brain With Enhanced Signal Intensity at Ultrashort Echo Times on a Clinical Platform at 3T and 7T

Ralf Mekle; Vladimir Mlynarik; Giulio Gambarota; Martin Hergt; Gunnar Krueger; Rolf Gruetter

Recently, the spin‐echo full‐intensity acquired localized (SPECIAL) spectroscopy technique was proposed to unite the advantages of short TEs on the order of milliseconds (ms) with full sensitivity and applied to in vivo rat brain. In the present study, SPECIAL was adapted and optimized for use on a clinical platform at 3T and 7T by combining interleaved water suppression (WS) and outer volume saturation (OVS), optimized sequence timing, and improved shimming using FASTMAP. High‐quality single voxel spectra of human brain were acquired at TEs below or equal to 6 ms on a clinical 3T and 7T system for six volunteers. Narrow linewidths (6.6 ± 0.6 Hz at 3T and 12.1 ± 1.0 Hz at 7T for water) and the high signal‐to‐noise ratio (SNR) of the artifact‐free spectra enabled the quantification of a neurochemical profile consisting of 18 metabolites with Cramér‐Rao lower bounds (CRLBs) below 20% at both field strengths. The enhanced sensitivity and increased spectral resolution at 7T compared to 3T allowed a two‐fold reduction in scan time, an increased precision of quantification for 12 metabolites, and the additional quantification of lactate with CRLB below 20%. Improved sensitivity at 7T was also demonstrated by a 1.7‐fold increase in average SNR (= peak height/root mean square [RMS]‐of‐noise) per unit‐time. Magn Reson Med, 2009.


Alzheimers & Dementia | 2010

Update on the magnetic resonance imaging core of the Alzheimer's disease neuroimaging initiative.

Clifford R. Jack; Matt A. Bernstein; Bret Borowski; Jeffrey L. Gunter; Nick C. Fox; Paul M. Thompson; Norbert Schuff; Gunnar Krueger; Ronald J. Killiany; Charles DeCarli; Anders M. Dale; Owen W. Carmichael; Duygu Tosun; Michael W. Weiner

Functions of the Alzheimers Disease Neuroimaging Initiative (ADNI) magnetic resonance imaging (MRI) core fall into three categories: (1) those of the central MRI core laboratory at Mayo Clinic, Rochester, Minnesota, needed to generate high quality MRI data in all subjects at each time point; (2) those of the funded ADNI MRI core imaging analysis groups responsible for analyzing the MRI data; and (3) the joint function of the entire MRI core in designing and problem solving MR image acquisition, pre‐processing, and analyses methods. The primary objective of ADNI was and continues to be improving methods for clinical trials in Alzheimers disease. Our approach to the present (“ADNI‐GO”) and future (“ADNI‐2,” if funded) MRI protocol will be to maintain MRI methodological consistency in the previously enrolled “ADNI‐1” subjects who are followed up longitudinally in ADNI‐GO and ADNI‐2. We will modernize and expand the MRI protocol for all newly enrolled ADNI‐GO and ADNI‐2 subjects. All newly enrolled subjects will be scanned at 3T with a core set of three sequence types: 3D T1‐weighted volume, FLAIR, and a long TE gradient echo volumetric acquisition for micro hemorrhage detection. In addition to this core ADNI‐GO and ADNI‐2 protocol, we will perform vendor‐specific pilot sub‐studies of arterial spin‐labeling perfusion, resting state functional connectivity, and diffusion tensor imaging. One of these sequences will be added to the core protocol on systems from each MRI vendor. These experimental sub‐studies are designed to demonstrate the feasibility of acquiring useful data in a multicenter (but single vendor) setting for these three emerging MRI applications.


PLOS ONE | 2009

Diffusion Spectrum Imaging Shows the Structural Basis of Functional Cerebellar Circuits in the Human Cerebellum In Vivo

Cristina Granziera; Jeremy D. Schmahmann; Nouchine Hadjikhani; Heiko Meyer; Reto Meuli; Van J. Wedeen; Gunnar Krueger

Background The cerebellum is a complex structure that can be affected by several congenital and acquired diseases leading to alteration of its function and neuronal circuits. Identifying the structural bases of cerebellar neuronal networks in humans in vivo may provide biomarkers for diagnosis and management of cerebellar diseases. Objectives To define the anatomy of intrinsic and extrinsic cerebellar circuits using high-angular resolution diffusion spectrum imaging (DSI). Methods We acquired high-resolution structural MRI and DSI of the cerebellum in four healthy female subjects at 3T. DSI tractography based on a streamline algorithm was performed to identify the circuits connecting the cerebellar cortex with the deep cerebellar nuclei, selected brainstem nuclei, and the thalamus. Results Using in-vivo DSI in humans we were able to demonstrate the structure of the following cerebellar neuronal circuits: (1) connections of the inferior olivary nucleus with the cerebellar cortex, and with the deep cerebellar nuclei (2) connections between the cerebellar cortex and the deep cerebellar nuclei, (3) connections of the deep cerebellar nuclei conveyed in the superior (SCP), middle (MCP) and inferior (ICP) cerebellar peduncles, (4) complex intersections of fibers in the SCP, MCP and ICP, and (5) connections between the deep cerebellar nuclei and the red nucleus and the thalamus. Conclusion For the first time, we show that DSI tractography in humans in vivo is capable of revealing the structural bases of complex cerebellar networks. DSI thus appears to be a promising imaging method for characterizing anatomical disruptions that occur in cerebellar diseases, and for monitoring response to therapeutic interventions.


Magnetic Resonance in Medicine | 2009

Automatic quality assessment in structural brain magnetic resonance imaging

Bénédicte Mortamet; Matt A. Bernstein; Clifford R. Jack; Jeffrey L. Gunter; Chadwick P. Ward; Paula J. Britson; Reto Meuli; Jean-Philippe Thiran; Gunnar Krueger

MRI has evolved into an important diagnostic technique in medical imaging. However, reliability of the derived diagnosis can be degraded by artifacts, which challenge both radiologists and automatic computer‐aided diagnosis. This work proposes a fully‐automatic method for measuring image quality of three‐dimensional (3D) structural MRI. Quality measures are derived by analyzing the air background of magnitude images and are capable of detecting image degradation from several sources, including bulk motion, residual magnetization from incomplete spoiling, blurring, and ghosting. The method has been validated on 749 3D T1‐weighted 1.5T and 3T head scans acquired at 36 Alzheimers Disease Neuroimaging Initiative (ADNI) study sites operating with various software and hardware combinations. Results are compared against qualitative grades assigned by the ADNI quality control center (taken as the reference standard). The derived quality indices are independent of the MRI system used and agree with the reference standard quality ratings with high sensitivity and specificity (>85%). The proposed procedures for quality assessment could be of great value for both research and routine clinical imaging. It could greatly improve workflow through its ability to rule out the need for a repeat scan while the patient is still in the magnet bore. Magn Reson Med, 2009.


Neurorx | 2005

Foundations of Advanced Magnetic Resonance Imaging

Roland Bammer; Stefan Skare; Rexford D. Newbould; Chunlei Liu; Vincent Thijs; Stefan Ropele; David B. Clayton; Gunnar Krueger; Michael E. Moseley; Gary H. Glover

SummaryDuring the past decade, major breakthroughs in magnetic resonance imaging (MRI) quality were made by means of quantum leaps in scanner hardware and pulse sequences. Some advanced MRI techniques have truly revolutionized the detection of disease states and MRI can now— within a few minutes—acquire important quantitative information noninvasively from an individual in any plane or volume at comparatively high resolution. This article provides an overview of the most common advanced MRI methods including diffusion MRI, perfusion MRI, functional MRI, and the strengths and weaknesses of MRI at high magnetic field strengths.


NeuroImage | 2011

Effects of hardware heterogeneity on the performance of SVM Alzheimer's disease classifier

Ahmed Abdulkadir; Bénédicte Mortamet; Prashanthi Vemuri; Clifford R. Jack; Gunnar Krueger; Stefan Klöppel

Fully automated machine learning methods based on structural magnetic resonance imaging (MRI) data can assist radiologists in the diagnosis of Alzheimers disease (AD). These algorithms require large data sets to learn the separation of subjects with and without AD. Training and test data may come from heterogeneous hardware settings, which can potentially affect the performance of disease classification. A total of 518 MRI sessions from 226 healthy controls and 191 individuals with probable AD from the multicenter Alzheimers Disease Neuroimaging Initiative (ADNI) were used to investigate whether grouping data by acquisition hardware (i.e. vendor, field strength, coil system) is beneficial for the performance of a support vector machine (SVM) classifier, compared to the case where data from different hardware is mixed. We compared the change of the SVM decision value resulting from (a) changes in hardware against the effect of disease and (b) changes resulting simply from rescanning the same subject on the same machine. Maximum accuracy of 87% was obtained with a training set of all 417 subjects. Classifiers trained with 95 subjects in each diagnostic group and acquired with heterogeneous scanner settings had an empirical detection accuracy of 84.2±2.4% when tested on an independent set of the same size. These results mirror the accuracy reported in recent studies. Encouragingly, classifiers trained on images acquired with homogenous and heterogeneous hardware settings had equivalent cross-validation performances. Two scans of the same subject acquired on the same machine had very similar decision values and were generally classified into the same group. Higher variation was introduced when two acquisitions of the same subject were performed on two scanners with different field strengths. The variation was unbiased and similar for both diagnostic groups. The findings of the study encourage the pooling of data from different sites to increase the number of training samples and thereby improving performance of disease classifiers. Although small, a change in hardware could lead to a change of the decision value and thus diagnostic grouping. The findings of this study provide estimators for diagnostic accuracy of an automated disease diagnosis method involving scans acquired with different sets of hardware. Furthermore, we show that the level of confidence in the performance estimation significantly depends on the size of the training sample, and hence should be taken into account in a clinical setting.


NeuroImage | 2012

Prospective and retrospective motion correction in diffusion magnetic resonance imaging of the human brain

Tobias Kober; Rolf Gruetter; Gunnar Krueger

Diffusion-weighting in magnetic resonance imaging (MRI) increases the sensitivity to molecular Brownian motion, providing insight in the micro-environment of the underlying tissue types and structures. At the same time, the diffusion weighting renders the scans sensitive to other motion, including bulk patient motion. Typically, several image volumes are needed to extract diffusion information, inducing also inter-volume motion susceptibility. Bulk motion is more likely during long acquisitions, as they appear in diffusion tensor, diffusion spectrum and q-ball imaging. Image registration methods are successfully used to correct for bulk motion in other MRI time series, but their performance in diffusion-weighted MRI is limited since diffusion weighting introduces strong signal and contrast changes between serial image volumes. In this work, we combine the capability of free induction decay (FID) navigators, providing information on object motion, with image registration methodology to prospectively--or optionally retrospectively--correct for motion in diffusion imaging of the human brain. Eight healthy subjects were instructed to perform small-scale voluntary head motion during clinical diffusion tensor imaging acquisitions. The implemented motion detection based on FID navigator signals is processed in real-time and provided an excellent detection performance of voluntary motion patterns even at a sub-millimetre scale (sensitivity≥92%, specificity>98%). Motion detection triggered an additional image volume acquisition with b=0 s/mm2 which was subsequently co-registered to a reference volume. In the prospective correction scenario, the calculated motion-parameters were applied to perform a real-time update of the gradient coordinate system to correct for the head movement. Quantitative analysis revealed that the motion correction implementation is capable to correct head motion in diffusion-weighted MRI to a level comparable to scans without voluntary head motion. The results indicate the potential of this method to improve image quality in diffusion-weighted MRI, a concept that can also be applied when highest diffusion weightings are performed.

Collaboration


Dive into the Gunnar Krueger's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Reto Meuli

University Hospital of Lausanne

View shared research outputs
Top Co-Authors

Avatar

Jean-Philippe Thiran

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar

Rolf Gruetter

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Guillaume Bonnier

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar

Renaud Du Pasquier

University Hospital of Lausanne

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge