Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gunnar Schulte is active.

Publication


Featured researches published by Gunnar Schulte.


Naunyn-schmiedebergs Archives of Pharmacology | 2000

Structure and function of adenosine receptors and their genes

Bertil B. Fredholm; Giulia Arslan; Linda Halldner; Björn Kull; Gunnar Schulte; Wyeth W. Wasserman

Four adenosine receptors have been cloned from many mammalian and some non-mammalian species. In each case the translated part of the receptor is encoded by two separate exons. Two separate promoters regulate the A1 receptor expression, and a similar situation may pertain also for the other receptors. The receptors are expressed in a cell and tissue specific manner, even though A1 and A2B receptors are found in many different cell types. Emerging data indicate that the receptor protein is targeted to specific parts of the cell. A1 and A3 receptors activate the Gi family of G proteins, whereas A2A and A2B receptors activate the Gs family. However, other G proteins can also be activated even though the physiological significance of this is unknown. Following the activation of G proteins several cellular effector pathways can be affected. Signaling via adenosine receptors is also known to interact in functionally important ways with signaling initiated via other receptors.


Cellular Signalling | 2003

Signalling from adenosine receptors to mitogen-activated protein kinases

Gunnar Schulte; Bertil B. Fredholm

The purine nucleoside adenosine acts via four distinct adenosine receptor subtypes: the adenosine A(1), A(2A), A(2B), and A(3) receptor. They are all G protein-coupled receptors (GPCR) coupling to classical second messenger pathways such as modulation of cAMP production or the phospholipase C (PLC) pathway. In addition, they couple to mitogen-activated protein kinases (MAPK), which could give them a role in cell growth, survival, death and differentiation. Although each of the adenosine receptors can activate one or more of the MAPKs, the mechanisms appear to differ substantially, both between receptor subtypes in the same cell type and between the same receptor in different cell types.


Biochemical Pharmacology | 2001

Comparison of the potency of adenosine as an agonist at human adenosine receptors expressed in Chinese hamster ovary cells.

Bertil B. Fredholm; Eva Irenius; Björn Kull; Gunnar Schulte

The potency of adenosine and inosine as agonists at human adenosine receptors was examined in a functional assay using changes in cyclic AMP (cAMP) formation in intact Chinese hamster ovary (CHO) cells stably transfected with the human A1, A2A, A2B, and A3 receptors. Adenosine increased cAMP formation in cells expressing the A2A (EC(50): 0.7 microM) and A2B (EC(50): 24 microM) receptors and inhibited forskolin (0.3-3 microM)-stimulated cAMP formation in cells expressing the A1 (EC(50): 0.31 microM) and A3 receptors (EC(50): 0.29 microM). The potency of adenosine at the A2A and A2B receptors was not altered by the presence of the uptake inhibitor nitrobenzylthioinosine (NBMPR), whereas it was increased about 6-fold by NBMPR at the A1 and A3 receptors. In the presence of NBMPR, inosine was a potent agonist (EC(50): 7 and 0.08 microM at the A1 and A3 receptors, respectively), but with low efficacy especially at the A3 receptors. No effect of inosine was seen at the A(2) receptors. Caffeine, theophylline, and paraxanthine shifted the dose-response curve for adenosine at the A1, A2A, and A2B receptors. These results indicate that adenosine is the endogenous agonist at all human adenosine receptors and that physiological levels of this nucleoside can activate A1, A2A, and A3 receptors on cells where they are abundantly expressed, whereas pathophysiological conditions are required to stimulate A2B receptors to produce cyclic AMP.


Journal of Cell Science | 2007

Wnt-5a induces Dishevelled phosphorylation and dopaminergic differentiation via a CK1-dependent mechanism

Vítězslav Bryja; Gunnar Schulte; Nina Rawal; Alexandra Grahn; Ernest Arenas

Previously, we have shown that Wnt-5a strongly regulates dopaminergic neuron differentiation by inducing phosphorylation of Dishevelled (Dvl). Here, we identify additional components of the Wnt-5a-Dvl pathway in dopaminergic cells. Using in vitro gain-of-function and loss-of-function approaches, we reveal that casein kinase 1 (CK1) δ and CK1ϵ are crucial for Dvl phosphorylation by non-canonical Wnts. We show that in response to Wnt-5a, CK1ϵ binds Dvl and is subsequently phosphorylated. Moreover, in response to Wnt-5a or CK1ϵ, the distribution of Dvl changed from punctate to an even appearance within the cytoplasm. The opposite effect was induced by a CK1ϵ kinase-dead mutant or by CK1 inhibitors. As expected, Wnt-5a blocked the Wnt-3a-induced activation of β-catenin. However, both Wnt-3a and Wnt-5a activated Dvl2 by a CK1-dependent mechanism in a cooperative manner. Finally, we show that CK1 kinase activity is necessary for Wnt-5a-induced differentiation of primary dopaminergic precursors. Thus, our data identify CK1 as a component of Wnt-5a-induced signalling machinery that regulates dopaminergic differentiation, and suggest that CK1δ/ϵ-mediated phosphorylation of Dvl is a common step in both canonical and non-canonical Wnt signalling.


Pharmacological Reviews | 2010

International Union of Basic and Clinical Pharmacology. LXXX. The Class Frizzled Receptors

Gunnar Schulte

The receptor class Frizzled, which has recently been categorized as a separate group of G protein-coupled receptors by the International Union of Basic and Clinical Pharmacology, consists of 10 Frizzleds (FZD1–10) and Smoothened (SMO). The FZDs are activated by secreted lipoglycoproteins of the Wingless/Int-1 (WNT) family, whereas SMO is indirectly activated by the Hedgehog (HH) family of proteins acting on the transmembrane protein Patched (PTCH). Recent years have seen major advances in our knowledge about these seven-transmembrane-spanning proteins, including: receptor function, molecular mechanisms of signal transduction, and the receptors role in embryonic patterning, physiology, cancer, and other diseases. Despite intense efforts, many question marks and challenges remain in mapping receptor-ligand interaction, signaling routes, mechanisms of specificity and how these molecular details underlie disease and also the receptors important role in physiology. This review therefore focuses on the molecular aspects of WNT/FZD and HH/SMO signaling discussing receptor structure, mechanisms of signal transduction, accessory proteins, receptor dynamics, and the possibility of targeting these signaling pathways pharmacologically.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Beta-arrestin is a necessary component of Wnt/beta-catenin signaling in vitro and in vivo.

Vítězslav Bryja; Dietmar Gradl; Alexandra Schambony; Ernest Arenas; Gunnar Schulte

The Wnt/β-catenin signaling pathway is crucial for proper embryonic development and tissue homeostasis. The phosphoprotein dishevelled (Dvl) is an integral part of Wnt signaling and has recently been shown to interact with the multifunctional scaffolding protein β-arrestin. Using Dvl deletion constructs, we found that β-arrestin binds a region N-terminal of the PDZ domain of Dvl, which contains casein kinase 1 (CK1) phosphorylation sites. Inhibition of Wnt signaling by CK1 inhibitors reduced the binding of β-arrestin to Dvl. Moreover, mouse embryonic fibroblasts lacking β-arrestins were able to phosphorylate LRP6 in response to Wnt-3a but decreased the activation of Dvl and blocked β-catenin signaling. In addition, we found that β-arrestin can bind axin and forms a trimeric complex with axin and Dvl. Furthermore, treatment of Xenopus laevis embryos with β-arrestin morpholinos reduced the activation of endogenous β-catenin, decreased the expression of the β-catenin target gene, Xnr3, and blocked axis duplication induced by X-Wnt-8, CK1ε, or DshΔDEP, but not by β-catenin. Thus, our results identify β-arrestin as a necessary component for Wnt/β-catenin signaling, linking Dvl and axin, and open a vast array of signaling avenues and possibilities for cross-talk with other β-arrestin-dependent signaling pathways.


Physiology & Behavior | 2007

Modulation of glial cell functions by adenosine receptors

Elisabetta Daré; Gunnar Schulte; Olga Karovic; Christian Hammarberg; Bertil B. Fredholm

Adenosine is an endogenous neuromodulator, acting on four distinctive G-protein-coupled receptors, the A1, A2A, A2B and A3 adenosine receptors. Increased neuronal activity and, hypoxia or ischemia, result in elevated levels of adenosine reflecting changes of the metabolic state. This increases activation of the adenosine receptors. It is well appreciated that adenosine has a neuroprotective role in brain injuries. Although adenosine effects have been explained mainly by actions on nerve cells, modulation of glial functions by adenosine is likely to be important as discussed in this minireview. Thus, in astrocytes adenosine receptors modulate inter alia glycogen metabolism, glutamate transporters, astrogliosis and astrocyte swelling. Microglial cells appear to be important in regulating adenosine formation from ATP and adenosine can affect many microglial signaling pathways. Adenosine receptors on oligodendrocytes regulate white matter development.


Glia | 2011

WNT signaling in activated microglia is proinflammatory.

Carina Halleskog; Jan Mulder; Jenny Dahlström; Ken Mackie; Tibor Hortobágyi; Heikki Tanila; Lakshman Puli; Katrin Färber; Tibor Harkany; Gunnar Schulte

Microglia activation is central to the neuroinflammation associated with neurological and neurodegenerative diseases, particularly because activated microglia are often a source of proinflammatory cytokines. Despite decade‐long research, the molecular cascade of proinflammatory transformation of microglia in vivo remains largely elusive. Here, we report increased β‐catenin expression, a central intracellular component of WNT signaling, in microglia undergoing a proinflammatory morphogenic transformation under pathogenic conditions associated with neuroinflammation such as Alzheimers disease. We substantiate disease‐associated β‐catenin signaling in microglia in vivo by showing age‐dependent β‐catenin accumulation in mice with Alzheimers‐like pathology (APdE9). In cultured mouse microglia expressing the WNT receptors Frizzled FZD4,5,7,8 and LDL receptor‐related protein 5/6 (LRP5/6), we find that WNT‐3A can stabilize β‐catenin. WNT‐3A dose dependently induces LRP6 phosphorylation with downstream activation of disheveled, β‐catenin stabilization, and nuclear import. Gene‐expression profiling reveals that WNT‐3A stimulation specifically increases the expression of proinflammatory immune response genes in microglia and exacerbates the release of de novo IL‐6, IL‐12, and tumor necrosis factor α. In summary, our data suggest that the WNT family of lipoglycoproteins can instruct proinflammatory microglia transformation and emphasize the pathogenic significance of β‐catenin‐signaling networks in this cell type.


The Journal of Neuroscience | 2004

Endocannabinoid-independent retrograde signaling at inhibitory synapses in layer 2/3 of neocortex: involvement of vesicular glutamate transporter 3.

Tibor Harkany; Carl Holmgren; Wolfgang Härtig; Tayyaba Qureshi; Farrukh A. Chaudhry; Jon Storm-Mathisen; Marton B. Dobszay; Paul Berghuis; Gunnar Schulte; Kyle M. Sousa; Robert T. Fremeau; Robert H. Edwards; Ken Mackie; Patrik Ernfors; Yuri Zilberter

Recent studies implicate dendritic endocannabinoid release from subsynaptic dendrites and subsequent inhibition of neurotransmitter release from nerve terminals as a means of retrograde signaling in multiple brain regions. Here we show that type 1 cannabinoid receptor-mediated endocannabinoid signaling is not involved in the retrograde control of synaptic efficacy at inhibitory synapses between fast-spiking interneurons and pyramidal cells in layer 2/3 of the neocortex. Vesicular neurotransmitter transporters, such as vesicular glutamate transporters (VGLUTs) 1 and 2, are localized to presynaptic terminals and accumulate neurotransmitters into synaptic vesicles. A third subtype of VGLUTs (VGLUT3) was recently identified and found localized to dendrites of various cell types. We demonstrate, using multiple immunofluorescence labeling and confocal laser-scanning microscopy, that VGLUT3-like immunoreactivity is present in dendrites of layer 2/3 pyramidal neurons in the rat neocortex. Electron microscopy analysis confirmed that VGLUT3-like labeling is localized to vesicular structures, which show a tendency to accumulate in close proximity to postsynaptic specializations in dendritic shafts of pyramidal cells. Dual whole-cell recordings revealed that retrograde signaling between fast-spiking interneurons and pyramidal cells was enhanced under conditions of maximal efficacy of VGLUT3-mediated glutamate uptake, whereas it was reduced when glutamate uptake was inhibited by incrementing concentrations of the nonselective VGLUT inhibitor Evans blue (0.5-5.0 μm) or intracellular Cl- concentrations (4-145 mm). Our results present further evidence that dendritic vesicular glutamate release, controlled by novel VGLUT isoforms, provides fast negative feedback at inhibitory neocortical synapses, and demonstrate that glutamate can act as a retrograde messenger in the CNS.


Brain | 2011

Molecular reorganization of endocannabinoid signalling in Alzheimer’s disease

Jan Mulder; Misha Zilberter; Susana J. Pasquaré; Alán Alpár; Gunnar Schulte; Samira G. Ferreira; Attila Köfalvi; Ana María Martín-Moreno; Erik Keimpema; Heikki Tanila; Masahiko Watanabe; Ken Mackie; Tibor Hortobágyi; María L. de Ceballos; Tibor Harkany

Retrograde messengers adjust the precise timing of neurotransmitter release from the presynapse, thus modulating synaptic efficacy and neuronal activity. 2-Arachidonoyl glycerol, an endocannabinoid, is one such messenger produced in the postsynapse that inhibits neurotransmitter release upon activating presynaptic CB(1) cannabinoid receptors. Cognitive decline in Alzheimers disease is due to synaptic failure in hippocampal neuronal networks. We hypothesized that errant retrograde 2-arachidonoyl glycerol signalling impairs synaptic neurotransmission in Alzheimers disease. Comparative protein profiling and quantitative morphometry showed that overall CB(1) cannabinoid receptor protein levels in the hippocampi of patients with Alzheimers disease remain unchanged relative to age-matched controls, and CB(1) cannabinoid receptor-positive presynapses engulf amyloid-β-containing senile plaques. Hippocampal protein concentrations for the sn-1-diacylglycerol lipase α and β isoforms, synthesizing 2-arachidonoyl glycerol, significantly increased in definite Alzheimers (Braak stage VI), with ectopic sn-1-diacylglycerol lipase β expression found in microglia accumulating near senile plaques and apposing CB(1) cannabinoid receptor-positive presynapses. We found that microglia, expressing two 2-arachidonoyl glycerol-degrading enzymes, serine hydrolase α/β-hydrolase domain-containing 6 and monoacylglycerol lipase, begin to surround senile plaques in probable Alzheimers disease (Braak stage III). However, Alzheimers pathology differentially impacts serine hydrolase α/β-hydrolase domain-containing 6 and monoacylglycerol lipase in hippocampal neurons: serine hydrolase α/β-hydrolase domain-containing 6 expression ceases in neurofibrillary tangle-bearing pyramidal cells. In contrast, pyramidal cells containing hyperphosphorylated tau retain monoacylglycerol lipase expression, although at levels significantly lower than in neurons lacking neurofibrillary pathology. Here, monoacylglycerol lipase accumulates in CB(1) cannabinoid receptor-positive presynapses. Subcellular fractionation revealed impaired monoacylglycerol lipase recruitment to biological membranes in post-mortem Alzheimers tissues, suggesting that disease progression slows the termination of 2-arachidonoyl glycerol signalling. We have experimentally confirmed that altered 2-arachidonoyl glycerol signalling could contribute to synapse silencing in Alzheimers disease by demonstrating significantly prolonged depolarization-induced suppression of inhibition when superfusing mouse hippocampi with amyloid-β. We propose that the temporal dynamics and cellular specificity of molecular rearrangements impairing 2-arachidonoyl glycerol availability and actions may differ from those of anandamide. Thus, enhanced endocannabinoid signalling, particularly around senile plaques, can exacerbate synaptic failure in Alzheimers disease.

Collaboration


Dive into the Gunnar Schulte's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge